Flow Networks
CSCl 43?2



Optimality

Max-F1low(G)
f(e) =0 for all e in G
while s-t path 1n Gf exists

P = simple s-t path 1n G¢
f’= augment(f, P)
f=f’
Gf — Gf’
return f

Need to show:

3. Finds max flow.

augment(f, P)
b = bottleneck(pP, )
for each edge (u, v) in P
if (u, v) is a back edge

f((v, W) -=b
else
fC(u, v)) += b
return f



Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: ...



Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8
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Definitions: Suppose G is a flow network and nodes in G are divided into two
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.
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Definitions: Suppose G is a flow network and nodes in G are divided into two
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

Invalid cut! Every vertex needs
to be is in one of the sets!
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

c(A,B) =7??




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

Invalid cut! Every vertex needs
to be in exactly one of the sets!




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =7??




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

Invalids —tcut! sand ¢
need to be in different sets!




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.
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Game Plan:
1. Show the value of every flow is < capacity
of every cut.
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of every cut.
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Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show the value of every flow is < capacity
of every cut.
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Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show the value of every flow is < capacity
of every cut.
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Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(4, B), is the sum of capacities of all edges out of A.

c(A’ B) — 8 |Consequence: If we find some flow
whose value equals the capacity of
Game Plan: some cut, it must be the optimal flow.

1. Show the value of every flow is < capacity
of every cut.
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Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show the value of every flow is < capacity
of every cut.
2. Given a flow where therearenos —t
paths left in the residual graph, there is a
specific cut whose capacity = flow value.




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:

1. Show the value of every flow is < capacity
of every cut.

2. Given a flow where therearenos — t
paths left in the residual graph, there is a
specific cut whose capacity = flow value.

Consequence: The algorithm is optimal




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then, |f]| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: \

Edges that enter the set A

Edges that leave the set A



This relates arbitrary s — t flows
to arbitrary s — t cuts

Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then; |f| — ZeEOUt(A) f(e) _ Zeein(A) f(e)

Proof: \

Edges that enter the set A

Edges that leave the set A



Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof:

11 = 40
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Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then; |f| = ZeEOUt(A) f(e) T Zeein(A) f(e) |f| _ 40

Proof: 2eeout(a) f(€) =50
2ecina f(€) = 10




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, [f| = Zeeout(A) fle) — Zeein(A) f(e).
Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'




Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let f°“(v) = Zeeout(v)f(e) and f"(v) = Zeein(v)f(e)'
Then, Vv € 4,v # s, fO% (v) — f*(v) =?




Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, Yv € 4,v # s, fO% (v) — f"(v) = 0 (by conservation of flow).
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Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'

Then, Yv € 4,v # s, fO% (v) — f"(v) = 0 (by conservation of flow).
By definition, |f]| = foU4(s).




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'

Then, Yv € 4,v # s, fO% (v) — f"(v) = 0 (by conservation of flow).
By definition, |f]| = foU4(s).

= If] = f¥(s) — F7(s) (since f"(s) = 0)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let % (v) = Zeeout(v)f(e) and f"(v) = Zeein(v)f(e)'
Then, Yv € 4,v # s, fO% (v) — f"(v) = 0 (by conservation of flow).
By definition, |f]| = foU4(s).

= If| = fOU(s) — Fin(s) (since fi"(s) = 0)

= |f| = Xpea( fO¥ (V) — f"(v)) (Only # 0 when v = s).




Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then/ |f| — ZeEOUt(A) f(e) T Zeein(A) f(e)

Proof: Let fOU(v) = Yecoutw) f (e) and f'(v) = Zeein(v)f(e)'
Then, |f| = Ypea( fO (W) — f™(v)) (Only # 0 when v = s).




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let f*** (V) = Bpeout) f(€) and f7(V) =X cine, f(€):
Then, |f]| = X,ea( fO% (v n (1)) (Only # 0 when v = s).

N\

Need to translate vertices in 4
into edges leaving A.




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let f°%(v) = X coutw) f(€) and f7(v) = 2eciniw) f (€)-
Then, |f| = Ypea( fO (W) — f™(v)) (Only # 0 when v = s).
Ve = (u, U) e E: 1. u € A,v € A (edge is inside A)
2. U€& A, ve&A (edge is outside A)
3. Uu€ A, v & A (edge leaves A)
4. u & A,V € A (edge enters A)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let f*** (V) = Xecout) f(€) and f7(V) =X i, f(€):
Then, |f] = Xpea( O (W) — f7(v)) (Only # 0 when v = s).
Ve=(u,v) EE: 1. u€eAveA- f(e)cancelsout. (Insomev € A

2. u@ A, v & A (edgeis outside A) and out another)
3. Uu€ A, v & A (edge leaves A)

4. u & A,V € A (edge enters A)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea(fOH (W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—Ffereaneelseut- (Insomev € A

2. u@ A, v & A (edgeis outside A) and out another)
3. Uu€ A, v & A (edge leaves A)

4. u & A,V € A (edge enters A)




Optimality
Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.
Then, |f]| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea( fO (W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

)

3. Uu€ A, v & A (edge leaves A)
4. u & A,V € A (edge enters A)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) f(e) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea(fOH W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

3. u€A,vé&A- f(e)addstothe sum.
4. u & A,V € A (edge enters A)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea( fOH (W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

2—u T A v A —Flerdeesnotappearatall
3. u€A,vé&A- f(e)addstothe sum.

4. u & A,v € A - f(e) subtracts from the sum.




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea( fO (W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

2—u T A v A —Flerdeesnotappearatall
3. u€A,vé&A- f(e)addstothe sum.

4. ugAved- f (e) subtracts from the sum.
= Yvea(f O W) — f7 (V)
= Zeeout(A)f(e) o Zeein(A)f(e)




Optimality

Theorem 1: Let G be a flow network, (4, B) beans — t cut, and f be an s — t flow.

Then, |f| = Zeeout(A) fle) — Zeein(A) f(e).

Proof: Let fout(v) = Zeeout(v)f(e) and fin(v) = Zeein(v)f(e)'
Then, |f| = Ypea( fO (W) — f™(v)) (Only # 0 when v = s).
Ve = (u,v) EE: d—uecAvecA—F(c)eancelsout

2—u T A v A —Flerdeesnotappearatall
3. u€A,vé&A- f(e)addstothe sum.

4. u & A,v € A - f(e) subtracts from the sum.
= Ypea( O W) — fF ()
= z:eEOU'C(A) f(e) o Zeein(A) f(e)
= |f| = Zecouta) f(€) — Zeein(A)f(e)




This relates arbitrary s — t flows

Optl ma | |ty to arbitrary s — t cuts

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = Zeeout(A)f(e) — Zeein(A)f(e).




This relates arbitrary s — t flows
to arbitrary s — t cuts

Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = Zeeout(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:

?



Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:

|f| — ZeeOUt(A) f(e) — Zeein(A) f(e)




Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeeOUt(A) f(e) — Zeein(A) f(e)
< ZeEOUt(A)f(e)




Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeEOUt(A) f(e) _ ZeEiﬂ(A) f(e)
= ZeEOut(A)f(e)
< Lecout(a) Ce = €(4, B)




Optimality

Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t
flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeeOUt(A) f(e) — Zeein(A) f(e)

< z:eeout(A) f(e)

If we find some flow f and
< c,=c(A4 B
Z"EOUt(A) € ( ) some cut (4, B) such that

|If| = c(4,B), then?




Optimality
Theorem 1: Let G be a flow network, (A, B) beans —t cut,and f beans —t

flow. Then, |f]| = ZeEOut(A)f(e) — Zeein(A)f(e)'

Corollary: Suppose G is a flow network, f isans — t flow on G, and (4, B) is an
s —tcut. Then, |f| < c(4, B). (i.e. every flow is bounded by any s — t cut)

Proof:
|f| — ZeEOUt(A) f(e) _ ZeEiﬂ(A) f(e)
Sz:eeou’((A)f(e) e fird flow f and
< Zeeout(A) Co = C(A,B) we Tind some flow f an

some cut (4, B) such that
If| = c(A,B), then fis a
maximum flow.




Optimality

Definitions: Suppose G is a flow network and nodes in G are divided into two
sets, A and B, suchthats € Aandt € B. Wecall (4,B) ans — t cut. The
capacity of the cut, c(A4, B), is the sum of capacities of all edges out of A.

c(A,B) =8

Game Plan:
1. Show the value of every flow is < capacity
of every cut.
2. Given a flow where therearenos —t
paths left in the residual graph, there is a
specific cut whose capacity = flow value.




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof:



Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof:




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.
(A,B) isan s — t cut (because ?)




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Need to compare flow across cut to capacity of cut.




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) such thatu € Aand v € B.
What can we say about f (e) related to its capacityf?




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathin G} and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) € Gr, otherwise v would be in A)




Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathinGs}and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) € Gr, otherwise v would be in A)

Lete’ = (u’, V') € E (directed edge) such that u’ € B and v’ € A.
What can we say about f(e’)?

G: Gr:
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Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathinGs}and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) such thatu € Aand v € B.
f(e) = c. (since (u,v) € Gr, otherwise v would be in A)

Lete’ = (U, V') € E (directed edge) such that u’ € B and v’ € A.
f(e") = 0(since (v',u’) & G, otherwise u’ would be in A)

G: Gr:
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Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathinGs}and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) suchthatu € Aand v € B.
f(e) = cc (since (u,v) & Gr, otherwise v would be in A)

Lete’ = (u’,v’) € E (directed edge) such that u’ € B and v’ € A.
f(e") = 0(since (v',u’) & G, otherwise u’ would be in A)

Therefore, |f| = Xocouta) f(€) — Zeein(A)f(e) (By Theorem 1)



Optimality

Theorem 2:if f isan s — t flow such that no s — t path exists in residual graph
Gg, then thereisan s —t cut (4,B) in G = (V, E) for which |f| = c(4, B).

Proof: Let A = {v € V:3s —vpathinGs}and B = VV\A.
(A,B) isan s — t cut (because it partitions I/, s € 4, and t € B)

Lete = (u,v) € E (directed edge) suchthatu € Aand v € B.
f(e) = cc (since (u,v) & Gr, otherwise v would be in A)

Lete’ = (u’,v’) € E (directed edge) such that u’ € B and v’ € A.
f(e") = 0(since (v',u’) & G, otherwise u’ would be in A)

Therefore, |f| = Xocouta) f(€) — Zeein(A)f(e) (By Theorem 1)
= decout(a) Ce — 0 = c(4,B)



Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a

maximum flow.

Proof:

27

Corollary: Suppose G is a flow network, fisans —t
flow on G, and (4,B) isans — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2: if f isans — t flow such thatnos — ¢
path exists in residual graph Gy, then thereisans — t

cut (4,B)inG = (V,E) for which |f| = c(4, B).




Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

Corollary: Suppose G is a flow network, fisans —t
flow on G, and (4,B) isans — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2: if f isans — t flow such thatnos — ¢
path exists in residual graph Gy, then thereisans — t

cut (4,B)inG = (V,E) for which |f| = c(4, B).




Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a

maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose G is a flow network, fisans —t
flow on G, and (4,B) isans — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2: if f isans — t flow such thatnos — ¢

path exists in residual graph Gy, then thereisans — t
cut (4,B)inG = (V,E) for which |f| = c(4, B).




Optimality

Theorem: The flow returned by the Ford-Fulkerson algorithm is a

maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no s — t paths
remain in G¢, Theorem 2 says there must be an s — t cut such that the
value of flow found equals the capacity of the cut.

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the

maximum flow.

Corollary: Suppose G is a flow network, fisans —t
flow on G, and (4,B) isans — t cut. Then, |f| <
c(4, B). (i.e. every flow is bounded by any s — t cut)

Theorem 2: if f isans — t flow such thatnos — ¢

path exists in residual graph Gy, then thereisans — t
cut (4,B)inG = (V,E) for which |f| = c(4, B).
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