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Optimality

Max-Flow(G)
 f(e) = 0 for all e in G
 while s-t path in Gf exists
  P = simple s-t path in Gf
  f’= augment(f, P)
  f = f’
  Gf = Gf’ 
 return f

augment(f, P)
 b = bottleneck(P,f)
 for each edge (u, v) in P
  if (u, v) is a back edge
   f((v, u)) -= b
  else
   f((u, v)) += b
 return f

Need to show:
1. Validity.
2. Running time.
3. Finds max flow.



Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: ...

Optimality



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑨 𝑩

Optimality

Invalid cut! Every vertex needs 
to be is in one of the sets!
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show the value of every flow is ≤ capacity 

of every cut.

Optimality



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
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some cut, it must be the optimal flow.



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof:
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
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This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
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Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).
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Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠). 

Need to translate vertices in 𝑨 
into edges leaving 𝑨.

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is inside 𝑨)

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴 
and out another)



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge is outside 𝑨)

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality

(In some 𝑣 ∈ 𝐴 
and out another)



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴

(edge leaves 𝑨)

(edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 (edge enters 𝑨)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

  ⟹ σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 )
   = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 flow. 
Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Proof: Let 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒∈out(𝑣) 𝑓(𝑒) and 𝑓𝑖𝑛 𝑣 = σ𝑒∈in(𝑣) 𝑓(𝑒).

Then, |𝑓| = σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 ) (Only ≠ 0 when 𝑣 = 𝑠).
 ∀𝑒 = 𝑢, 𝑣 ∈ 𝐸: 1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) cancels out.

2.  𝑢 ∉ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) does not appear at all.
3.  𝑢 ∈ 𝐴, 𝑣 ∉ 𝐴 → 𝑓(𝑒) adds to the sum.
4.  𝑢 ∉ 𝐴, 𝑣 ∈ 𝐴 → 𝑓(𝑒) subtracts from the sum.

  ⟹ σ𝑣∈𝐴( 𝑓𝑜𝑢𝑡 𝑣 − 𝑓𝑖𝑛 𝑣 )
   = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒

  ⟹ |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ
𝑒∈in 𝐴 𝑓 𝑒

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Optimality
This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 ?

Optimality
This relates arbitrary 𝒔 − 𝒕 flows 
to arbitrary 𝒔 − 𝒕 cuts



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

  

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

  

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒  = 𝑐(𝐴, 𝐵)

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒  = 𝑐(𝐴, 𝐵) If we find some flow 𝒇 and 
some cut (𝑨, 𝑩) such that 
|𝒇| = 𝒄(𝑨, 𝑩), then ?

Optimality



Theorem 1: Let 𝐺 be a flow network, 𝐴, 𝐵  be an 𝑠 − 𝑡 cut, and 𝑓 be an 𝑠 − 𝑡 
flow. Then, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒 .

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 flow on 𝐺, and (𝐴, 𝐵) is an 
𝑠 − 𝑡 cut. Then, |𝑓| ≤ 𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Proof: 
 |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ

𝑒∈in 𝐴 𝑓 𝑒  

≤ σ𝑒∈out 𝐴 𝑓 𝑒

≤ σ𝑒∈out 𝐴 𝑐𝑒  = 𝑐(𝐴, 𝐵) If we find some flow 𝒇 and 
some cut (𝑨, 𝑩) such that 
|𝒇| = 𝒄(𝑨, 𝑩), then 𝒇 is a 
maximum flow.

Optimality



Definitions: Suppose 𝐺 is a flow network and nodes in 𝐺 are divided into two 
sets, 𝑨 and 𝑩, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵. We call (𝐴, 𝐵) an 𝑠 − 𝑡 cut. The 
capacity of the cut, 𝑐(𝐴, 𝐵), is the sum of capacities of all edges out of A.
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𝑐 𝐴, 𝐵 = 8

𝑨
𝑩

Game Plan:
1. Show the value of every flow is ≤ capacity 

of every cut.
2. Given a flow where there are no 𝑠 − 𝑡 

paths left in the residual graph, there is a 
specific cut whose capacity = flow value.

 

Optimality



Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof:
 

Optimality



Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: 
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because ?)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Need to compare flow across cut to capacity of cut.
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  What can we say about 𝑓(𝑒) related to its capacity?
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  𝑓(𝑒) = 𝑐𝑒  (since (𝑢, 𝑣) ∉ 𝐺𝑓, otherwise 𝑣 would be in 𝐴)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  𝑓(𝑒) = 𝑐𝑒  (since (𝑢, 𝑣) ∉ 𝐺𝑓, otherwise 𝑣 would be in 𝐴)

 Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
   What can we say about 𝑓(𝑒’)? 
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  𝑓(𝑒) = 𝑐𝑒  (since (𝑢, 𝑣) ∉ 𝐺𝑓, otherwise 𝑣 would be in 𝐴)

 Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
   𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺𝑓, otherwise 𝑢’ would be in 𝐴)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  𝑓(𝑒) = 𝑐𝑒  (since (𝑢, 𝑣) ∉ 𝐺𝑓, otherwise 𝑣 would be in 𝐴)

 Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
   𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺𝑓, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ
𝑒∈in 𝐴 𝑓 𝑒   (By Theorem 1)
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Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 path exists in residual graph 
𝐺𝑓, then there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵).

Proof: Let 𝐴 = {𝑣 ∈ 𝑉: ∃ 𝑠 − 𝑣 path in 𝐺𝑓} and 𝐵 = 𝑉\𝐴.

 (𝐴, 𝐵) is an 𝑠 − 𝑡 cut (because it partitions 𝑉, 𝑠 ∈ 𝐴, and 𝑡 ∈ 𝐵)

 Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (directed edge) such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. 
  𝑓(𝑒) = 𝑐𝑒  (since (𝑢, 𝑣) ∉ 𝐺𝑓, otherwise 𝑣 would be in 𝐴)

 Let 𝑒’ = (𝑢’, 𝑣’) ∈ 𝐸 (directed edge) such that 𝑢’ ∈ 𝐵 and 𝑣’ ∈ 𝐴.
   𝑓(𝑒’) = 0 (since (𝑣’, 𝑢’) ∉ 𝐺𝑓, otherwise 𝑢’ would be in 𝐴)

Therefore, |𝑓| = σ𝑒∈out 𝐴 𝑓 𝑒 − σ
𝑒∈in 𝐴 𝑓 𝑒   (By Theorem 1)

= σ𝑒∈out 𝐴 𝑐𝑒 − 0 = 𝑐(𝐴, 𝐵)
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: 

 ??

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 
path exists in residual graph 𝐺𝑓, then there is an 𝑠 − 𝑡 

cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵). 
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺𝑓, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 

value of flow found equals the capacity of the cut. 

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 
path exists in residual graph 𝐺𝑓, then there is an 𝑠 − 𝑡 

cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵). 
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺𝑓, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 

value of flow found equals the capacity of the cut. 

By the Corollary, there cannot be a flow with a larger value.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 
path exists in residual graph 𝐺𝑓, then there is an 𝑠 − 𝑡 

cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵). 
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof: Since the Ford-Fulkerson algorithm finishes when no 𝑠 − 𝑡 paths 
remain in 𝐺𝑓, Theorem 2 says there must be an 𝑠 − 𝑡 cut such that the 

value of flow found equals the capacity of the cut. 

By the Corollary, there cannot be a flow with a larger value.

Therefore, the flow found by the Ford-Fulkerson algorithm is the 
maximum flow.

Corollary: Suppose 𝐺 is a flow network, 𝑓 is an 𝑠 − 𝑡 
flow on 𝐺, and (𝐴, 𝐵) is an 𝑠 − 𝑡 cut. Then, |𝑓| ≤
𝑐(𝐴, 𝐵). (i.e. every flow is bounded by any 𝑠 − 𝑡 cut)

Theorem 2: if 𝑓 is an 𝑠 − 𝑡 flow such that no 𝑠 − 𝑡 
path exists in residual graph 𝐺𝑓, then there is an 𝑠 − 𝑡 

cut (𝐴, 𝐵) in 𝐺 = (𝑉, 𝐸) for which |𝑓| = 𝑐(𝐴, 𝐵). 
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