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Maximizing Profit

MT Ski Company (MSC) sells two skis: The Ripper, and far fancier Ripper 
Carbon. MSC needs to decide how much of each ski it should make to 
maximize profits. Suppose:

1. Rippers yield profit of $100 and Ripper Carbons $300. 
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  Subject to: 𝑥1 ≤ 30
    𝑥2 ≤ 20
    𝑥1 + 𝑥2 ≤ 40



Linear Program (LP)

𝑥1 = # of Rippers sold
𝑥2 = # of Ripper Carbons

Objective: max 100𝑥1 + 300𝑥2

Subject to: 𝑥1 ≤ 30
   𝑥2 ≤ 20
   𝑥1 + 𝑥2 ≤ 40
   𝑥1, 𝑥2 ≥ 0
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Linear Program (LP)

Decision Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).
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Constraints:
• Can be ≤, ≥, =.
• Must be linear combinations of variables.
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Maximizing Profit
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𝑥1 = # of Rippers sold in a day
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Maximizing Profit

Feasible Region 
(area where all valid solutions lie)
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𝑥1 = # of Rippers sold in a day
𝑥2 = # of Ripper Carbons sold in a day

Objective: max 100𝑥1 + 300𝑥2

Subject to: 𝑥1 ≤ 30
  𝑥2 ≤ 20
  𝑥1 + 𝑥2 ≤ 40
  𝑥1, 𝑥2 ≥ 0

Maximizing Profit

What is the optimal value?
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𝑥1 = # of Rippers sold in a day
𝑥2 = # of Ripper Carbons sold in a day

Objective: max 100𝑥1 + 300𝑥2

Subject to: 𝑥1 ≤ 30
  𝑥2 ≤ 20
  𝑥1 + 𝑥2 ≤ 40
  𝑥1, 𝑥2 ≥ 0

Maximizing Profit

obj = 100 ∗ 20 + 300 ∗ 20 = 8000

20, 20



Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)
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How can we efficiently find optimal 
solutions?
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How can we efficiently find optimal 
solutions?

Identify two key properties of optimal 
solutions:

1. ?
2. ?
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Objective: 𝐦𝐚𝐱 𝟓
Subject to: 𝒄𝟏(𝒙𝟏, 𝒙𝟐)
          ⁞
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
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          ⁞
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function?

Yes, if 𝑓 𝑥1, 𝑥2 = constant.

𝑓 𝑥1, 𝑥2  is a plane ⟹ a max/min of 𝑓 𝑥1, 𝑥2  
occurs on the boundary of the feasible region. Since 
feasible region has linear boundaries, max/min must 
occur at a vertex in the feasible region.

𝑥1

𝑥2 𝑓 𝑥1, 𝑥2

𝑥1

𝑓 𝑥1, 𝑥2



Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

How can we efficiently find optimal 
solutions?

Identify two key properties of optimal 
solutions:

1. Optimal value occurs at a vertex.
2. ?
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? 
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
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Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ ?
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. 
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and …

40
𝑥1

𝑥2

0

30

20

10

40

302010

𝒍

𝒈



Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
are feasible (?). 
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
are feasible (convex feasible region). 
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
are feasible (convex feasible region). Thus, objective 
values of the line is a line on objective hyperplane...
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
are feasible (convex feasible region). Thus, objective 
values of the line is a line on objective hyperplane...
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Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
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Is there a relationship between a local max/min and 
a global max/min? local max/min = global max/min.

local max ⇒ all points in 𝜀-neighborhood of 𝑙 have 
lower objective values.
Let 𝑔 be global max. Some point in 𝜀-nbhd lies on 
the line between 𝑙 and 𝑔 and all points on that line 
are feasible (convex feasible region). Thus, objective 
values of the line is a line on objective hyperplane...
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optimum and objective 
be linear is for feasible 
region to not be convex.
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How can we efficiently find optimal 
solutions?

Identify two key properties of optimal 
solutions:

1. Optimal value occurs at a vertex.
2. Local optimum is global optimum.



Optimal Value
Objective: max 𝑓(𝑥1, 𝑥2)
Subject to: 𝑐1(𝑥1, 𝑥2)
  𝑐2(𝑥1, 𝑥2)
          ⁞
  𝑐𝑛(𝑥1, 𝑥2)

40
𝑥1

𝑥2

0

30

20

10

40

302010

Properties of optimal solutions:
1. Optimal value occurs at a vertex.
2. Local optimum is global optimum.

Algorithm to find optimal solution:

?
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Objective: max 𝑓(𝑥1, 𝑥2)
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Properties of optimal solutions:
1. Optimal value occurs at a vertex.
2. Local optimum is global optimum.

Algorithm to find optimal solution:
Test each vertex in order until no 
neighbors have larger (or smaller) value.
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Max Flow
Given a directed, edge-weighted graph, where each edge has an associated 
capacity, make a linear program that will determine the maximum flow on 
the network.

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑐𝑒 = Capacity of edge 𝑒?

Not a decision variable!!

I.e., the solver is not allowed to 
modify this to influence the solution
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capacity, make a linear program that will determine the maximum flow on 
the network.

𝑥𝑒 = Amount of flow on edge 𝑒.

Objective:    max σ𝑒∈out 𝑠 𝑥𝑒
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capacity, make a linear program that will determine the maximum flow on 
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𝑥𝑒 = Amount of flow on edge 𝑒.
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Subject to: 𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸
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𝑒∈in(𝑣) 𝑥𝑒 − σ𝑒∈out 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
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Max Flow
Given a directed, edge-weighted graph, where each edge has an associated 
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𝑥𝑒 = Amount of flow on edge 𝑒.
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Max Flow
Given a directed, edge-weighted graph, where each edge has an associated 
capacity, make a linear program that will determine the maximum flow on 
the network.

𝑥𝑒 = Amount of flow on edge 𝑒.

Objective:    max σ𝑒∈out 𝑠 𝑥𝑒

Subject to: 𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸
 σ

𝑒∈in(𝑣) 𝑥𝑒 − σ𝑒∈out 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}
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Issue Urban Suburban Rural

Infrastructure -2 +5 +3

Gun Control +8 +2 -5

Farm Subsidies +0 +0 +10

Gasoline Tax +10 +0 -2

A district has an urban area (100,000 voters), suburban area (200,000 voters), 
and rural area (50,000 voters). A politician decided she needs at least half of the 
voters in each area to support her. Her campaign has four issues which are 
popular/unpopular with specific areas. The campaign has estimated the number 
of voters gained or lost based on each $1 spent advertising an issue. The 
campaign aims to minimize advertising expenses.
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Step 1: Make variables. 

“What are the decisions that 
need to be made?” 
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Farm Subsidies +0 +0 +10
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A district has an urban area (100,000 voters), suburban area (200,000 voters), 
and rural area (50,000 voters). A politician decided she needs at least half of the 
voters in each area to support her. Her campaign has four issues which are 
popular/unpopular with specific areas. The campaign has estimated the number 
of voters gained or lost based on each $1 spent advertising an issue. The 
campaign aims to minimize advertising expenses.

𝑥1 = $ spent on infrastructure.
𝑥2 = $ spent on gun control.
𝑥3 = $ spent on farm subsidies.
𝑥4 = $ spent on gasoline tax.
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Subject to: −2𝑥1 + 8𝑥2 + 10𝑥4 ≥ 50,000 Step 3: Make constraints. 

“What are the requirements for 
the solution to be valid?” 
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Do we need non-negativity 
constraints?
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Non-negativity Constraints

Objective: min 𝑥
Subject to: 𝑥 ≥ 0
  

Optimal Value: 𝑥 = −∞
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A district has an urban area (100,000 voters), suburban area (200,000 voters), 
and rural area (50,000 voters). A politician decided she needs at least half of the 
voters in each area to support her. Her campaign has four issues which are 
popular/unpopular with specific areas. The campaign has estimated the number 
of voters gained or lost based on each $1 spent advertising an issue. The 
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