Linear Programming CSCI 432

Linear Program (LP)

• Must be linear combinations of variables.

Optimal Value

 x_2 40 30 20 10 x_1 40 30 10 20 0

Objective:
$$\max f(x_1, x_2)$$

Subject to: $c_1(x_1, x_2)$
 $c_2(x_1, x_2)$
 \vdots
 $c_n(x_1, x_2)$

Properties of optimal solutions:

- 1. Optimal value occurs at a vertex.
- 2. Local optimum is global optimum.

Algorithm to find optimal solution: Test each vertex in order until no neighbors have larger (or smaller) value.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 1: Make variables.

"What are the decisions that need to be made?"

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 1: Make variables.

"What are the decisions that need to be made?"

- $x_1 = \$$ spent on infrastructure.
- $x_2 =$ \$ spent on gun control.

$$x_3 =$$
\$ spent on farm subsidies.

$$x_4 =$$
\$ spent on gasoline tax.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 2: Make objective.

"What are we trying to maximize or minimize?"

- $x_1 = \$$ spent on infrastructure.
- $x_2 = \$$ spent on gun control.

$$x_3 =$$
\$ spent on farm subsidies.

$$x_4 =$$
\$ spent on gasoline tax.

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 2: Make objective.

"What are we trying to maximize or minimize?" $x_1 = \$$ spent on infrastructure.

 $x_2 = \$$ spent on gun control.

$$x_3 =$$
\$ spent on farm subsidies.

$$x_4 =$$
\$ spent on gasoline tax.

Objective: $\min x_1 + x_2 + x_3 + x_4$

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.

"What are the requirements for the solution to be valid?" $x_1 = \$$ spent on infrastructure. $x_2 = \$$ spent on gun control.

$$x_3 =$$
\$ spent on farm subsidies.

$$x_4 = \$$$
 spent on gasoline tax.

Objective: $\min x_1 + x_2 + x_3 + x_4$

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.

"What are the requirements for the solution to be valid?" $x_1 = \$$ spent on infrastructure. $x_2 = \$$ spent on gun control. $x_3 = \$$ spent on farm subsidies. $x_4 = \$$ spent on gasoline tax. Objective: min $x_1 + x_2 + x_3 + x_4$

Subjective: $\min x_1 + x_2 + x_3 + x_4$ Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.

"What are the requirements for the solution to be valid?" $\begin{array}{l} x_1 = \$ \text{ spent on infrastructure.} \\ x_2 = \$ \text{ spent on gun control.} \\ x_3 = \$ \text{ spent on farm subsidies.} \\ x_4 = \$ \text{ spent on gasoline tax.} \\ \\ \text{Objective: } \min x_1 + x_2 + x_3 + x_4 \\ \\ \text{Subject to: } -2x_1 + 8x_2 + 10x_4 \ge 50,000 \\ \\ 5x_1 + 2x_2 \ge 100,000 \\ \\ 3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000 \end{array}$

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Step 3: Make constraints.

"What are the requirements for the solution to be valid?"

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Optimal solution?

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Optimal solution?

https://docs.scipy.org/doc/scipy/reference/ generated/scipy.optimize.linprog.html

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
 $x_1 + x_2 + x_3 + x_4 = [1, 1, 1, 1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
 $\begin{bmatrix} -2 & 8 & 0 & 10 \\ 5 & 2 & 0 & 0 \\ 3 & -5 & 10 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 50,000 \\ 100,000 \\ 25,000 \end{bmatrix}$

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
 $\lim_{x} c^T x$
such that $A_{ub}x \le b_{ub}$,
 $A_{eq}x = b_{eq}$,
 $l \le x \le u$,

Objective:
$$\min[1,1,1,1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Subject to: $\begin{bmatrix} -2 & 8 & 0 & 10 \\ 5 & 2 & 0 & 0 \\ 3 & -5 & 10 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 50,000 \\ 100,000 \\ 25,000 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
 $\lim_{x} c^T x$
such that $A_{ub}x \le b_{ub}$,
 $A_{eq}x = b_{eq}$,
 $l \le x \le u$,

Objective:
$$\min[1,1,1,1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Subject to: $\begin{bmatrix} -2 & 8 & 0 & 10 \\ 5 & 2 & 0 & 0 \\ 3 & -5 & 10 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 50,000 \\ 100,000 \\ 25,000 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
Objective: $\min[1,1,1,1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$
Subject to: $\begin{bmatrix} 2 & -8 & 0 & -10 \\ -5 & -2 & 0 & 0 \\ -3 & 5 & -10 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} < \begin{bmatrix} -50,000 \\ -100,000 \\ -25,000 \end{bmatrix}$
 $= 2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $= 2x_1 - 8x_2 - 10x_4 \le -50,000$
 $= 2x_1 - 8x_2 - 10x_4 \le -50,000$
 $f(x) \ge a$ if and only if $-f(x) \le -a$

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
 $5x_1 + 2x_2 \ge 100,000$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
 $x_1, x_2, x_3, x_4 \ge 0$
 $\lim_{x} c^T x$
such that $A_{ub}x \le b_{ub}$,
 $A_{eq}x = b_{eq}$,
 $l \le x \le u$,

Objective:
$$\min[1,1,1,1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Subject to: $\begin{bmatrix} 2 & -8 & 0 & -10 \\ -5 & -2 & 0 & 0 \\ -3 & 5 & -10 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \le \begin{bmatrix} -50,000 \\ -100,000 \\ -25,000 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Code...

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Do we need non-negativity constraints?

Objective: $\max 100x_1 + 300x_2$ Subject to: $x_1 \le 30$ $x_2 \le 20$ $x_1 + x_2 \le 40$ $x_1, x_2 \ge 0$

Objective: $\min x$ Subject to: $x \ge 0$

Optimal Value: ?

Objective: $\min x$ Subject to: $x \ge 0$

Optimal Value: x = 0

Optimal Value: ?

Optimal Value: $x = -\infty$

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Do we need non-negativity constraints?

Issue	Urban	Suburban	Rural
Infrastructure	-2	+5	+3
Gun Control	+8	+2	-5
Farm Subsidies	+0	+0	+10
Gasoline Tax	+10	+0	-2

Do we need non-negativity constraints? Check and see!

A district has an urban area (100,000 voters), suburban area (200,000 voters), and rural area (50,000 voters). A politician decided she needs at least half of the voters in each area to support her. Her campaign has four issues which are popular/unpopular with specific areas. The campaign has ever of the number of voters gained or lost based on each \$1 spent adverted to the number campaign aims to minimize advertising expension in the number implicitly them in the number implicitly them in the number

Issue	Urban	Suburban	Rural	
Infrastructure	-2	+5		blen ints, infrastructure.
Gun Control	+8	12	e pr	ent on gun control.
Farm Subsidies	+0	. 19 21		s = \$ spent on farm subsidies.
Gasoline Tax	ss	n. at	NIC	$x_4 = $ \$ spent on gasoline tax.
	Lese,	nega		Objective: $\min x_1 + x_2 + x_3 + x_4$
	nor			Subject to: $-2x_1 + 8x_2 + 10x_4 \ge 50,000$
Do we new non-negativity		tivity	$5x_1 + 2x_2 \ge 100,000$	
constraints?				$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25,000$
				$x_1, x_2, x_3, x_4 \ge 0$