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Minimum-Cost Flow Problem: Suppose we have a target flow demand 
𝑑, and a flow network where each edge also has a cost in addition to its 
capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 𝑘𝑐(𝑒). Find an 𝑠 −
𝑡 flow of minimum cost with value 𝑑.
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Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
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Suppose a lumber mill produces 20-foot boards. They want to cut these 
boards in such a way as to provide the finished pieces in the table. They 
wish to minimize the waste (cut pieces that are not used). Extra boards 
cut to one of the desired lengths are fine.
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• Closest integer solution? – Not feasible
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Subject to: 𝑥1 + 𝑥2 ≤ 6 
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  𝑥1, 𝑥2 ≥ 0

Integer feasible region:
• Not convex.



2

4

𝑥1

𝑥2

0 642

30

33

36

393429

3732

40

𝑥1, 𝑥2 ∈ ℕ 

Objective:  max 5𝑥1 + 8𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 6 
  5𝑥1 + 9𝑥2 ≤ 45 
  𝑥1, 𝑥2 ≥ 0

Integer feasible region:
• Not convex.



2

4

𝑥1

𝑥2

0 642

30

33

36

393429

3732

40

𝑥1, 𝑥2 ∈ ℕ 

Objective:  max 5𝑥1 + 8𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 6 
  5𝑥1 + 9𝑥2 ≤ 45 
  𝑥1, 𝑥2 ≥ 0

Integer feasible region:
• Not convex.
• local optimum ≠ 

global optimum.
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𝑥1, 𝑥2 ∈ ℕ 

Objective:  max 5𝑥1 + 8𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 6 
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• Convex.
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Solving generic ILPs is NP-Hard.

But, just because you can build 
an ILP for a problem, that does 
not mean it is NP-Hard.
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