Linear Programming CSCI 432

Let d = 3030 + 20 + 10 + 20 = 80

Linear Program?

a

10

 x_e = Amount of flow on edge e.

capacity, \$ capac

 x_e = Amount of flow on edge e.

Objective:

30 + 20 + 10 + 20 = 80 10 + 10 + 200 + 20 = 240

 x_e = Amount of flow on edge e.

Objective: $\min \sum_{e \in E} \operatorname{cost}_e x_e$

30 + 20 + 10 + 20 = 80 10 + 10 + 200 + 20 = 240

 x_e = Amount of flow on edge e. Objective: $\min \sum_{e \in E} \operatorname{cost}_e x_e$ Subject to:

30 + 20 + 10 + 20 = 80 10 + 10 + 200 + 20 = 240

 x_e = Amount of flow on edge e.Objective: $\min \sum_{e \in E} \operatorname{cost}_e x_e$ Subject to: $x_e \leq \operatorname{capacity}_e, \forall e \in E$

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & x_e \leq \text{capacity}_e, \, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \, \forall v \in V \setminus \{s, t\} \end{array}$

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \operatorname{cost}_e x_e \\ \text{Subject to:} & x_e \leq \operatorname{capacity}_e, \forall e \in E \\ & \sum_{e \in \operatorname{input}(v)} x_e - \sum_{e \in \operatorname{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \operatorname{output}(s)} x_e \geq d \\ & & & & & \\ \end{array}$

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \operatorname{cost}_e x_e \\ \text{Subject to:} & x_e \leq \operatorname{capacity}_e, \forall e \in E \\ & \sum_{e \in \operatorname{input}(v)} x_e - \sum_{e \in \operatorname{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \operatorname{output}(s)} x_e = d \end{array}$

 J_0

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \operatorname{cost}_e x_e \\ \text{Subject to:} & x_e \leq \operatorname{capacity}_e, \forall e \in E \\ & \sum_{e \in \operatorname{input}(v)} x_e - \sum_{e \in \operatorname{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \operatorname{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

What if we get rid of the capacity constraint?

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & \frac{x_e \leq \text{capacity}_e, \forall e \in E}{x_e \in \text{capacity}_e, \forall e \in E} \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

What if we get rid of the capacity constraint?

Shortest Path!

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & \frac{x_e \leq \text{capacity}_e, \forall e \in E}{x_e \in \text{capacity}_e, \forall e \in E} \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

30 + 20 + 10 + 20 = 80 10 + 10 + 200 + 20 = 240

What if edge charges are fixed if edge is used? $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & x_e \leq \text{capacity}_e, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

 J_0

Length (feet)	# Required
7	276
9	100
12	250

Length (feet)	# Required
7	276
9	100
12	250

Linear Program?

Length (feet)	# Required
7	276
9	100
12	250

$$x_1 = \{7', 7'\} \text{ cut } (6' \text{ waste}).$$

 $x_2 = \{9', 7'\} \text{ cut } (4' \text{ waste}).$
 $x_3 = \{9', 9'\} \text{ cut } (2' \text{ waste}).$
 $x_4 = \{12', 7'\} \text{ cut } (1' \text{ waste}).$

Length (feet)	# Required
7	276
9	100
12	250

 $x_{1} = \{7', 7'\} \text{ cut } (6' \text{ waste}).$ $x_{2} = \{9', 7'\} \text{ cut } (4' \text{ waste}).$ $x_{3} = \{9', 9'\} \text{ cut } (2' \text{ waste}).$ $x_{4} = \{12', 7'\} \text{ cut } (1' \text{ waste}).$ Objective: min $6x_{1} + 4x_{2} + 2x_{3} + x_{4}$

Length (feet)	# Required
7	276
9	100
12	250

 $x_1 = \{7', 7'\}$ cut (6' waste). $x_2 = \{9', 7'\}$ cut (4' waste). $x_3 = \{9', 9'\}$ cut (2' waste). $x_4 = \{12', 7'\}$ cut (1' waste). Objective: $\min 6x_1 + 4x_2 + 2x_3 + x_4$ Subject to: $2x_1 + x_2 + x_4 \ge 276$

Length (feet)	# Required
7	276
9	100
12	250

Length (feet)	# Required
7	276
9	100
12	250

Length (feet)	# Required
7	276
9	100
12	250

Length (feet)	# Required
7	276
9	100
12	250

Does solution need to be integer?

Length (feet)	# Required
7	276
9	100
12	250

Does solution need to be integer?

Is solution guaranteed to be integer?

Length (feet)	# Required
7	276
9	100
12	250

Does solution need to be integer?

Is solution guaranteed to be integer?

If feasible region is defined by integer vertices, the solution will be integer.

$x_1, x_2 \in \mathbb{R}$	
Objective: Subject to:	$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$
	$5x_1 + 9x_2 \le 45$
	x_1 , $x_2 \ge 0$

$$x_1, x_2 \in \mathbb{R}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

$x_1, x_2 \in \mathbb{R}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2 x_1 + x_2 \le 6 5x_1 + 9x_2 \le 45 x_1, x_2 \ge 0$

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$ $x_1, x_2 \ge 0$

- Closest integer solution?
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$ $x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?

$\max 5x_1 + 8x_2$ $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$ $x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary?

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39

$x_1, x_2 \in \mathbb{N}$	
Objective:	$\max 5x_1 + 8x_2$
Subject to:	$\begin{array}{l} x_1 + x_2 \le 6 \\ 5x_1 + 9x_2 < 45 \end{array}$
	$x_1, x_2 \ge 0$

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39
- Actual optimal Obj = 40

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

• Not convex.

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

• Not convex.

$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

- Not convex.
- local optimum ≠ global optimum.

$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

Minimal convex hull:

• Convex.

$$x_1, x_2 \in \mathbb{N}$$

Objective: max $5x_1 + 8x_2$
Subject to: $x_1 + x_2 \leq 6$
 $5x_1 + 9x_2 \leq 45$
 $x_1, x_2 \geq 0$

Minimal convex hull:

- Convex.
- local optimum = global optimum.

$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

Minimal convex hull:

- Convex.
- local optimum = global optimum.
- $O(n^{\lfloor d/2 \rfloor})$ faces,
 - n = # points and d = # dimensions

Solving generic ILPs is NP-Hard. But, just because you can build an ILP for a problem, that does not mean it is NP-Hard.

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

Minimal convex hull:

- Convex.
- local optimum = global optimum.
- $O(n^{\lfloor d/2 \rfloor})$ faces,

n = # points and d = # dimensions

 x_2

40