
Linear Programming
CSCI 432



Linear Program (LP)

Decision Variables:
• Real numbers = solvable in polynomial time (called LP).
• Integers = not (yet?) solvable in polynomial time 
   (called integer linear program – ILP).

Objective:
• Can be minimization or maximization.
• Must be linear combinations of variables 𝑥𝑖  
 (e.g. 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for constants 𝑎𝑖, not 𝑎𝑖𝑥1𝑥2).

Constraints:
• Can be ≤, ≥, =.
• Must be linear combinations of variables.

𝑥1 = # of Rippers sold
𝑥2 = # of Ripper Carbons

Objective: max100𝑥1 + 300𝑥2
Subject to: 𝑥1 ≤ 30
   𝑥2 ≤ 20
   𝑥1 + 𝑥2 ≤ 40
   𝑥1, 𝑥2 ≥ 0



Minimum-Cost Flow Problem: Suppose we have a target flow demand 
𝑑, and a flow network where each edge also has a cost in addition to its 
capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 𝑘𝑐(𝑒). Find an 𝑠 −
𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑥𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

10 + 10 + 200 + 20 = 240

Let 𝑑 = 30
2

0

30 + 20 + 10 + 20 = 80



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑥𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4

What if edge charges 
are fixed if edge is 
used?
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𝑥1, 𝑥2 ∈ ℕ 

Objective:  max5𝑥1 + 8𝑥2
Subject to: 𝑥1 + 𝑥2 ≤ 6 
  5𝑥1 + 9𝑥2 ≤ 45 
  𝑥1, 𝑥2 ≥ 0

Integer feasible region:
• Not convex.
• local optimum ≠ 

global optimum.



𝑥1, 𝑥2 ∈ ℕ 

Objective:  max5𝑥1 + 8𝑥2
Subject to: 𝑥1 + 𝑥2 ≤ 6 
  5𝑥1 + 9𝑥2 ≤ 45 
  𝑥1, 𝑥2 ≥ 0

Minimal convex hull:
• Convex.
• local optimum = 

global optimum.

𝑂 𝑛 ൗ𝑑 2  faces,    

𝑛 = # points and 
𝑑 = # dimensions
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𝑥1, 𝑥2 ∈ ℕ 

Objective:  max5𝑥1 + 8𝑥2
Subject to: 𝑥1 + 𝑥2 ≤ 6 
  5𝑥1 + 9𝑥2 ≤ 45 
  𝑥1, 𝑥2 ≥ 0

Minimal convex hull:
• Convex.
• local optimum = 

global optimum.

𝑂 𝑛 ൗ𝑑 2  faces,    

𝑛 = # points and 
𝑑 = # dimensions

𝑥2

2

4

𝑥1
0 642

30

39

40

Solving generic ILPs is NP-Hard.

But, just because you can build 
an ILP for a problem, that does 
not mean it is NP-Hard.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑥𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

What if edge charges 
are fixed if edge is 
used?

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

What if edge charges 
are fixed if edge is 
used?

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑥𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

What if edge charges 
are fixed if edge is 
used?

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℕ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℕ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4

Would this still work?

No. It could increase 
capacity along “cheap” 
edges.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℕ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

No. It could increase 
capacity along “cheap” 
edges.

Let 𝑑 = 30



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℕ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

No. It could increase 
capacity along “cheap” 
edges.

Let 𝑑 = 30

4 + 4 = 8
𝒚𝒆 = 𝟏



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℕ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

No. It could increase 
capacity along “cheap” 
edges.

3 + 3 = 6

Let 𝑑 = 30

4 + 4 = 8
𝒚𝒆 = 𝟏

𝒚𝒆 = 𝟑



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Would this still work?

No. It could decrease 
capacity (and under 
pay) on “cheap” edges.

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 1

Would this still work?

No. It could decrease 
capacity (and under 
pay) on “cheap” edges.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 1

5 + 5 = 10
𝒚𝒆 = 𝟏

Would this still work?

No. It could decrease 
capacity (and under 
pay) on “cheap” edges.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 1 = 2

Let 𝑑 = 1

5 + 5 = 10
𝒚𝒆 = 𝟏

𝒚𝒆 =
𝟏

𝟏𝟎

Would this still work?

No. It could decrease 
capacity (and under 
pay) on “cheap” edges.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4

What happens here?



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 2

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 30

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 2

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 30
2

0

1 + 2 + 1 + 1 = 5

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 2

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 30
2

0

1 + 2 + 1 + 1 = 5 1 + 3 = 4

𝑦 = 1 𝑦 = 3

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 2

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 30

1 + 3 = 4

2
0

1 + 2 + 1 + 1 = 5

𝑦 = 1 𝑦 = 3

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 2

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ ℝ = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Let 𝑑 = 30

1 + 3 = 4

2
0

1 + 2 + 1 + 1 = 5 1.5 + 1.5 = 3

𝑦 = 0.15 𝑦 = 1.5
𝑦 = 1 𝑦 = 3

What happens here?

These are all doing the 
same thing!

Shortest 𝑠−𝑡 path over 
the unit cost ($/unit 
flow) edge weights.



Minimum Fixed-Cost Flow Problem: Suppose we have a target flow 
demand 𝑑, and a flow network where each edge also has a cost in 
addition to its capacity. Pushing 𝑘 flow along edge 𝑒 incurs the cost 
𝒌𝒄(𝒆). Find an 𝑠 − 𝑡 flow of minimum cost with value 𝑑.

s t

a

b

2
0

, 1

capacity, $

𝑥𝑒 = Amount of flow on edge 𝑒.
𝑦𝑒 ∈ 0,1 = Indicates if edge 𝑒 is opened.

Objective:    minσ𝑒∈𝐸 cost𝑒𝑦𝑒
Subject to:    𝑥𝑒 ≤ capacity𝑒𝑦𝑒, ∀𝑒 ∈ 𝐸

σ
𝑒∈input(𝑣) 𝑥𝑒 − σ𝑒∈output 𝑣 𝑥𝑒 = 0, ∀𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

σ𝑒∈output 𝑠 𝑥𝑒 = 𝑑 

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

The minimum fixed-
cost flow problem is 
NP-Hard*, so there is 
likely no LP for it.

*not proven in class today!

1 + 10 + 1 + 1 = 13

Let 𝑑 = 30
2

0

1 + 1 + 1 + 1 = 4



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

✓ 



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

✓  ✓



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

What if we make an LP for Vertex Cover?



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

What if we make an LP for Vertex Cover?
 Then it would be solvable in polynomial time…



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

ILP?



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Objective: min𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5
Subject to: 𝑥1 + 𝑥2 ≥ 1
   𝑥1 + 𝑥3 ≥ 1
   𝑥2 + 𝑥4 ≥ 1
   𝑥3 + 𝑥4 ≥ 1
   𝑥3 + 𝑥5 ≥ 1
   𝑥4 + 𝑥5 ≥ 1

Example: 1

2

3

4

5



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Objective: min𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5
Subject to: 𝑥1 + 𝑥2 ≥ 1
   𝑥1 + 𝑥3 ≥ 1
   𝑥2 + 𝑥4 ≥ 1
   𝑥3 + 𝑥4 ≥ 1
   𝑥3 + 𝑥5 ≥ 1
   𝑥4 + 𝑥5 ≥ 1

Example: 1

2

3

4

5



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ [0,1] = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Objective: min𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5
Subject to: 𝑥1 + 𝑥2 ≥ 1
   𝑥1 + 𝑥3 ≥ 1
   𝑥2 + 𝑥4 ≥ 1
   𝑥3 + 𝑥4 ≥ 1
   𝑥3 + 𝑥5 ≥ 1
   𝑥4 + 𝑥5 ≥ 1

Example: 1

2

3

4

5

What happens?



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ [0,1] = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Objective: min𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5
Subject to: 𝑥1 + 𝑥2 ≥ 1
   𝑥1 + 𝑥3 ≥ 1
   𝑥2 + 𝑥4 ≥ 1
   𝑥3 + 𝑥4 ≥ 1
   𝑥3 + 𝑥5 ≥ 1
   𝑥4 + 𝑥5 ≥ 1

Example: 1

2

3

4

5

What happens?
𝑥1 = 0.5
𝑥2 = 0.5
𝑥3 = 0.5
𝑥4 = 0.5
𝑥5 = 0.5



Vertex Cover (VC) 

Vertex Cover: Given graph 𝐺 = (𝑉, 𝐸), find the smallest 𝑉′ ⊆ 𝑉 such that 
each edge in 𝐸 contains an end point in 𝑉′?

𝑥𝑖 ∈ 0,1 = Indicates if vertex 𝑖 is selected.

Objective: minσ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Since Vertex Cover is in NP-Complete, and ILPs 
can solve VC, solving ILPs is also NP-Complete.
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