Linear Programming CSCI 432

Linear Program (LP)

• Must be linear combinations of variables.

 $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \operatorname{cost}_e x_e \\ \text{Subject to:} & x_e \leq \operatorname{capacity}_e, \forall e \in E \\ & \sum_{e \in \operatorname{input}(v)} x_e - \sum_{e \in \operatorname{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \operatorname{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

What if edge charges are fixed if edge is used? $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & x_e \leq \text{capacity}_e, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

 J_0

$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

Integer feasible region:

- Not convex.
- local optimum ≠ global optimum.

$$x_1, x_2 \in \mathbb{N}$$
Objective: $\max 5x_1 + 8x_2$ Subject to: $x_1 + x_2 \leq 6$ $5x_1 + 9x_2 \leq 45$ $x_1, x_2 \geq 0$

Minimal convex hull:

- Convex.
- local optimum = global optimum.
- $O(n^{\lfloor d/2 \rfloor})$ faces,
 - n = # points and d = # dimensions

Solving generic ILPs is NP-Hard. But, just because you can build an ILP for a problem, that does not mean it is NP-Hard.

$x_1, x_2 \in \mathbb{N}$	
Objective: Subject to:	$\max 5x_{1} + 8x_{2}$ $x_{1} + x_{2} \le 6$ $5x_{1} + 9x_{2} \le 45$ $x_{1}, x_{2} \ge 0$

Minimal convex hull:

- Convex.
- local optimum = global optimum.
- $O(n^{\lfloor d/2 \rfloor})$ faces,

n = # points and d = # dimensions

 x_2

40

What if edge charges are fixed if edge is used? $\begin{array}{ll} x_e = \text{Amount of flow on edge } e. \\ \text{Objective:} & \min \sum_{e \in E} \text{cost}_e x_e \\ \text{Subject to:} & x_e \leq \text{capacity}_e, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ 10 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 1 +1 = 13 x_e = Amount of flow on edge e. $y_e \in \{0,1\} =$ Indicates if edge *e* is opened. What if edge charges are fixed if edge is Objective: $\min \sum_{e \in E} \operatorname{cost}_e x_e$ Subject to: $x_e \leq \text{capacity}_e, \forall e \in E$ used? $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ 10 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 1 +1 = 13 x_e = Amount of flow on edge e. $y_e \in \{0,1\} =$ Indicates if edge *e* is opened. What if edge charges are fixed if edge is Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Subject to: $x_e \leq \text{capacity}_e y_e, \forall e \in E$ used? $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ a) JO Let d = 301 + 1 + 1 + 1 = 41 + 10 + 11 = 13 x_e = Amount of flow on edge e. $y_e \in \mathbb{N} =$ Indicates if edge *e* is opened. Would this still work? Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Subject to: $x_e \leq \text{capacity}_e y_e, \forall e \in E$ $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ 10 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 1 +1 = 13 x_e = Amount of flow on edge e. $y_e \in \mathbb{N} =$ Indicates if edge *e* is opened. Would this still work? $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Objective: No. It could increase Subject to: $x_e \leq \text{capacity}_e y_e$, $\forall e \in E$ capacity along "cheap" $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ edges. $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Let d = 30

Would this still work?

No. It could increase capacity along "cheap" edges.

 $\begin{array}{l} x_e = \text{Amount of flow on edge } e. \\ y_e \in \mathbb{N} = \text{Indicates if edge } e \text{ is opened.} \\ \\ \text{Objective: } \min \sum_{e \in E} \text{cost}_e y_e \\ \text{Subject to: } x_e \leq \text{capacity}_e y_e, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e \geq 0, \forall e \in E \end{array}$

Would this still work?

No. It could increase capacity along "cheap" edges.

 $\begin{array}{l} x_e = \text{Amount of flow on edge } e. \\ y_e \in \mathbb{N} = \text{Indicates if edge } e \text{ is opened.} \\ \text{Objective: } \min \sum_{e \in E} \text{cost}_e y_e \\ \text{Subject to: } x_e \leq \text{capacity}_e y_e, \forall e \in E \\ \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ \sum_{e \in \text{output}(s)} x_e = d \\ x_e \geq 0, \forall e \in E \end{array}$

 $\sum_{e \in \text{output}(s)} x_e = d$

 $x_e \ge 0, \forall e \in E$

edges.

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ a) JO Let d = 301 + 1 + 1 + 1 = 41 + 10 + 11 = 13 x_e = Amount of flow on edge e. $y_e \in [0,1] =$ Indicates if edge *e* is opened. Would this still work? Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Subject to: $x_e \leq \text{capacity}_e y_e$, $\forall e \in E$ $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ 10 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 1 +1 = 13 x_e = Amount of flow on edge e. $y_e \in [0,1] =$ Indicates if edge *e* is opened. Would this still work? Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ No. It could decrease Subject to: $x_e \leq \text{capacity}_e y_e, \forall e \in E$ capacity (and under $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ pay) on "cheap" edges. $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Let d = 1

Would this still work?

No. It could decrease capacity (and under pay) on "cheap" edges.

 $\begin{array}{l} x_e = \text{Amount of flow on edge } e. \\ y_e \in [0,1] = \text{Indicates if edge } e \text{ is opened.} \\ \\ \text{Objective: } \min \sum_{e \in E} \text{cost}_e y_e \\ \text{Subject to: } x_e \leq \text{capacity}_e y_e, \forall e \in E \\ \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s,t\} \\ \sum_{e \in \text{output}(s)} x_e = d \\ x_e \geq 0, \forall e \in E \end{array}$

Would this still work?

No. It could decrease capacity (and under pay) on "cheap" edges.

 $\begin{aligned} x_e &= \text{Amount of flow on edge } e. \\ y_e &\in [0,1] = \text{Indicates if edge } e \text{ is opened.} \end{aligned}$ $\begin{aligned} \text{Objective:} & \min \sum_{e \in E} \text{cost}_e y_e \\ \text{Subject to:} & x_e &\leq \text{capacity}_e y_e, \forall e \in E \\ & \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ & \sum_{e \in \text{output}(s)} x_e = d \\ & x_e &\geq 0, \forall e \in E \end{aligned}$

a)

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ a) JO Let d = 301 + 1 + 1 + 1 = 41 = 131 + 10 + x_e = Amount of flow on edge e. What happens here? $y_e \in \mathbb{R} =$ Indicates if edge *e* is opened. Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Subject to: $x_e \leq \text{capacity}_e y_e$, $\forall e \in E$ $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ $\sum_{e \in \text{output}(s)} x_e = d$ $x_e \geq 0, \forall e \in E$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ 10 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 11 = 13 x_e = Amount of flow on edge e. What happens here? $y_e \in \mathbb{R} =$ Indicates if edge *e* is opened. These are all doing the Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ same thing! Subject to: $x_e \leq \text{capacity}_e y_e$, $\forall e \in E$ $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ Shortest *s*–*t* path over $\sum_{e \in \text{output}(s)} x_e = d$ the unit cost (\$/unit $x_e \ge 0, \forall e \in E$ flow) edge weights.

Let d = 30

What happens here?

These are all doing the same thing!

Shortest *s*-*t* path over the unit cost (\$/unit flow) edge weights. $\begin{array}{l} x_e = \text{Amount of flow on edge } e. \\ y_e \in \mathbb{R} = \text{Indicates if edge } e \text{ is opened.} \\ \\ \text{Objective: } \min \sum_{e \in E} \text{cost}_e y_e \\ \text{Subject to: } x_e \leq \text{capacity}_e y_e, \forall e \in E \\ \sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\} \\ \sum_{e \in \text{output}(s)} x_e = d \\ x_e \geq 0, \forall e \in E \end{array}$

Minimum Fixed-Cost Flow Problem: Suppose we have a target flow demand d, and a flow network where each edge also has a cost in addition to its capacity. Pushing k flow along edge e incurs the cost kc(e). Find an s - t flow of minimum cost with value d. capacity, \$ J_0 Let d = 301 + 1 + 1 + 1 = 41 + 10 + 1 + 1 = 13 x_e = Amount of flow on edge e. $y_e \in \{0,1\} =$ Indicates if edge *e* is opened. The minimum fixedcost flow problem is Objective: $\min \sum_{e \in E} \operatorname{cost}_e y_e$ Subject to: $x_e \leq \text{capacity}_e y_e, \forall e \in E$ **NP-Hard***, so there is $\sum_{e \in \text{input}(v)} x_e - \sum_{e \in \text{output}(v)} x_e = 0, \forall v \in V \setminus \{s, t\}$ likely no LP for it. $\sum_{e \in \text{output}(s)} x_e = d$ *not proven in class today! $x_e \geq 0, \forall e \in E$

Vertex Cover (VC)

Vertex Cover (VC)

Vertex Cover (VC)

What if we make an LP for Vertex Cover?

Vertex Cover (VC)

What if we make an LP for Vertex Cover? Then it would be solvable in polynomial time...

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Objective: $\min \sum_i x_i$

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Objective: $\min \sum_i x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Objective: $\min \sum_i x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Example: Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$ Subject to: $x_1 + x_2 \ge 1$ $x_1 + x_3 \ge 1$ $x_2 + x_4 \ge 1$ $x_3 + x_4 \ge 1$ $x_3 + x_5 \ge 1$ $x_4 + x_5 \ge 1$

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\}$ = Indicates if vertex *i* is selected.

Objective: $\min \sum_i x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 Example:
 Objective: $\min x_1 + x_2 + x_3 + x_4 + x_5$

 Subject to: $x_1 + x_2 \ge 1$
 $x_1 + x_3 \ge 1$
 $x_2 + x_4 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_3 + x_5 \ge 1$
 $x_4 + x_5 \ge 1$

Vertex Cover: Given graph G = (V, E), find the smallest $V' \subseteq V$ such that each edge in E contains an end point in V'?

 $x_i \in \{0,1\} =$ Indicates if vertex i is selected.Objective: $\min \sum_i x_i$ Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

Since Vertex Cover is in NP-Complete, and ILPs can solve VC, solving ILPs is also NP-Complete.