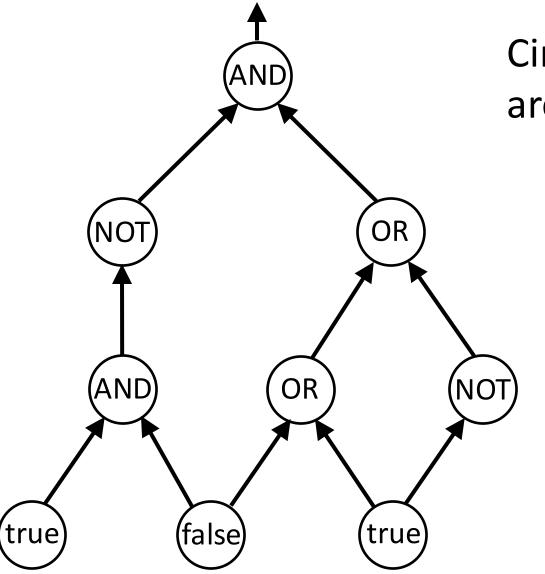
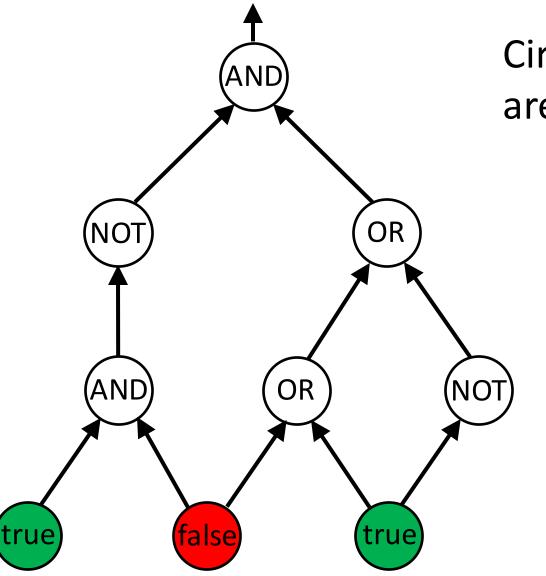
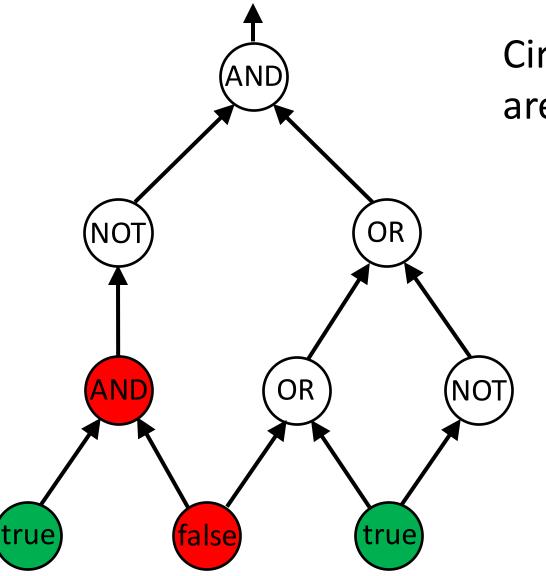
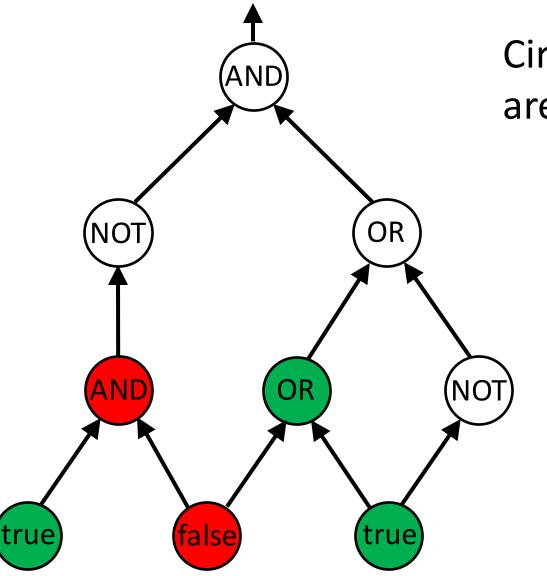
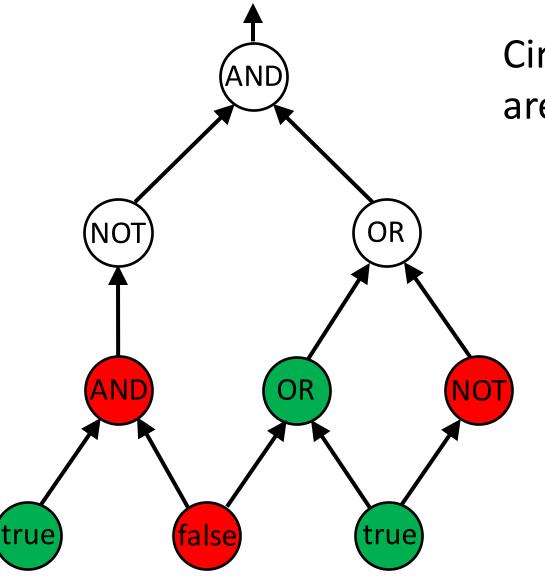
Linear Programming CSCI 432

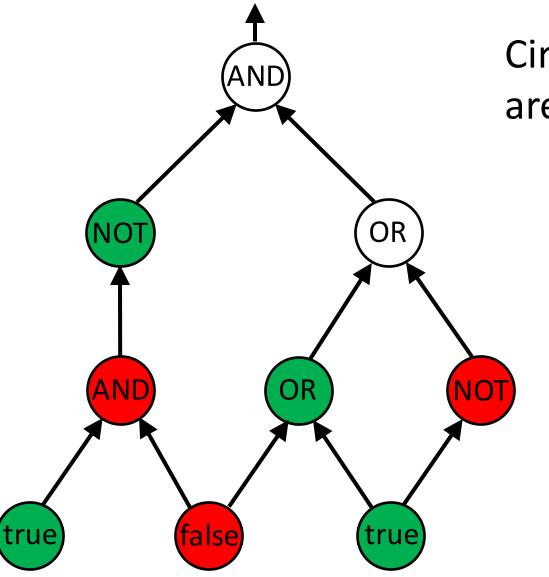


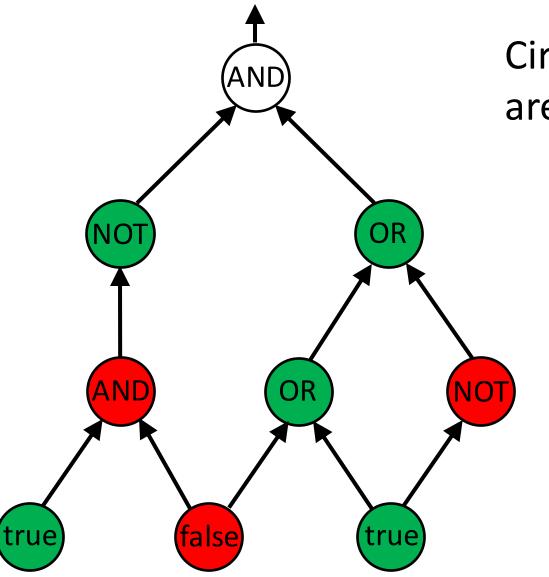


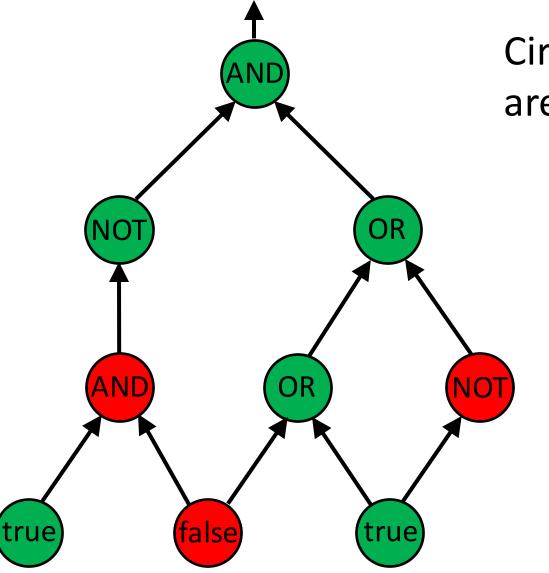


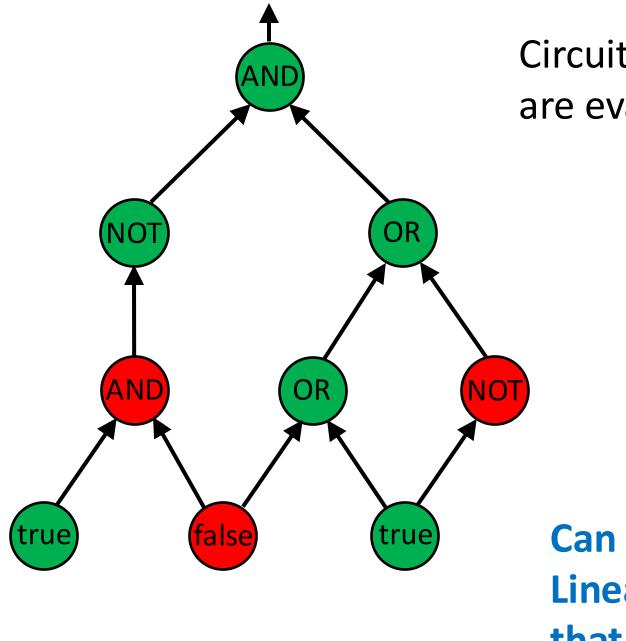






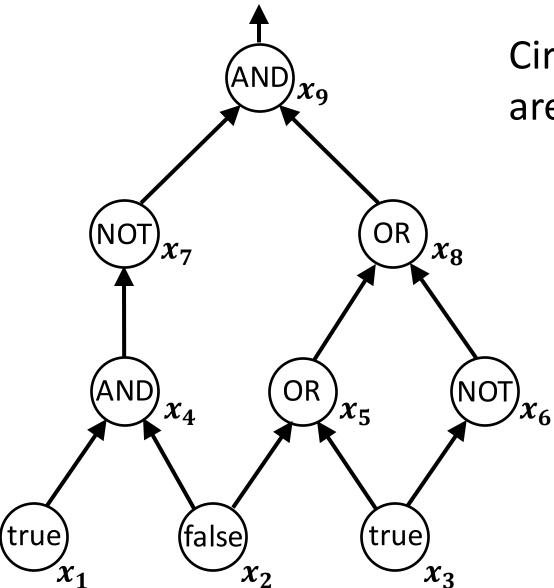




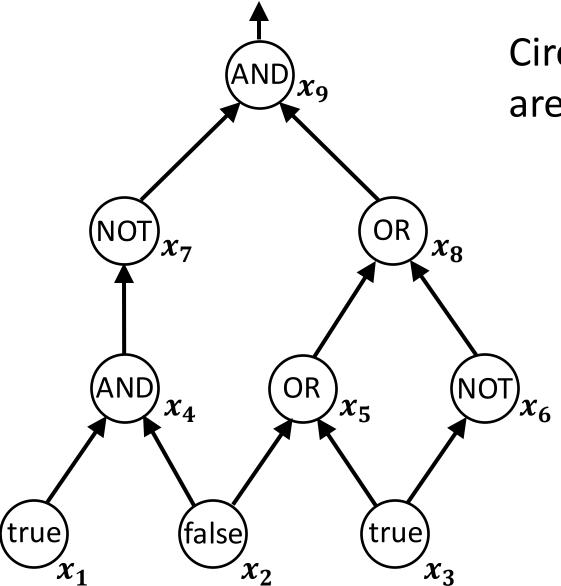


Given a circuit schematic, what is the answer? Can we make a Linear Program

that solves this?

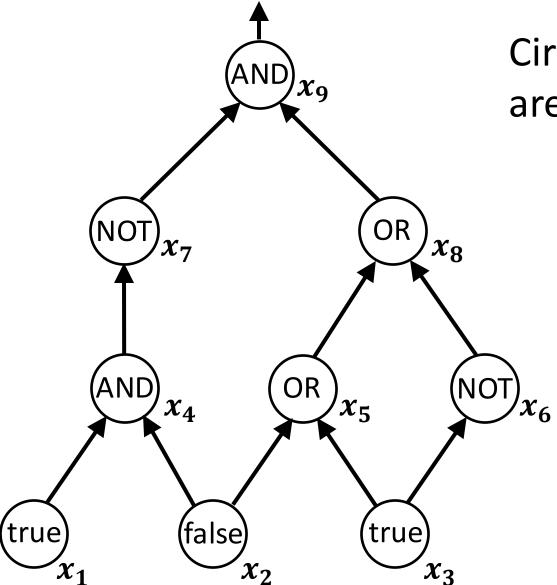


 $x_i = \text{gate's evaluated value}$

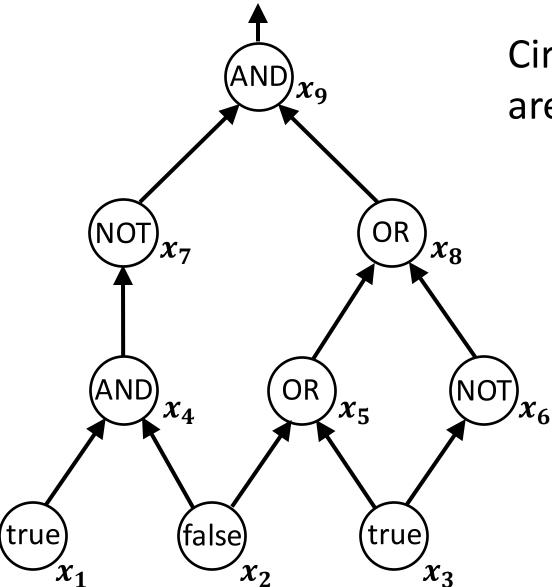


 $x_i = \text{gate's evaluated value}$

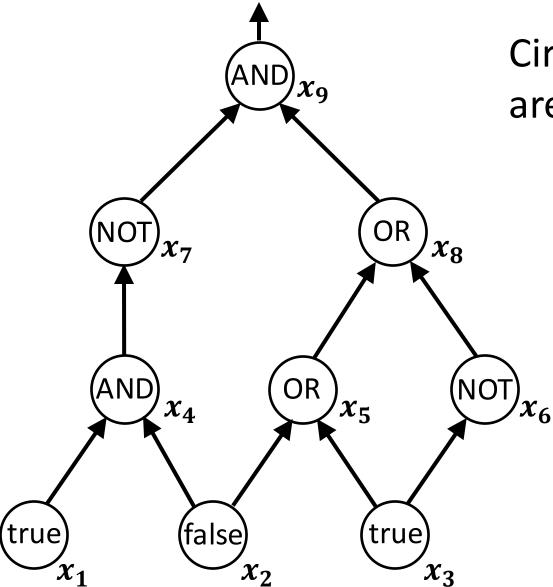
What is x_9 's value?



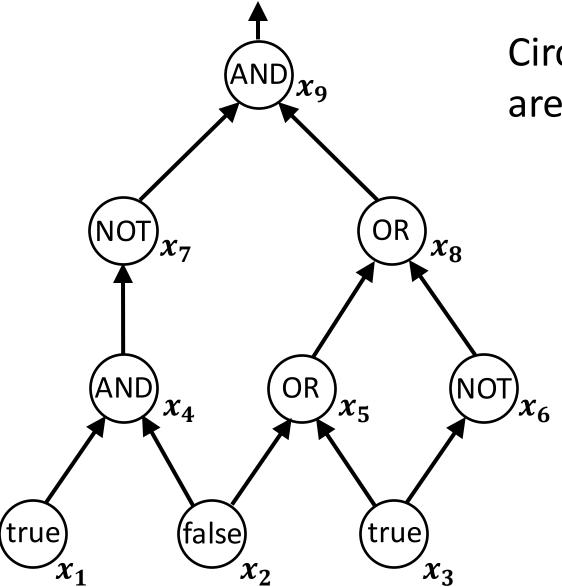
 $x_i = \text{gate's evaluated value}$ Objective: ??



 $x_i = gate's evaluated value$ Objective: ?? Subject to:

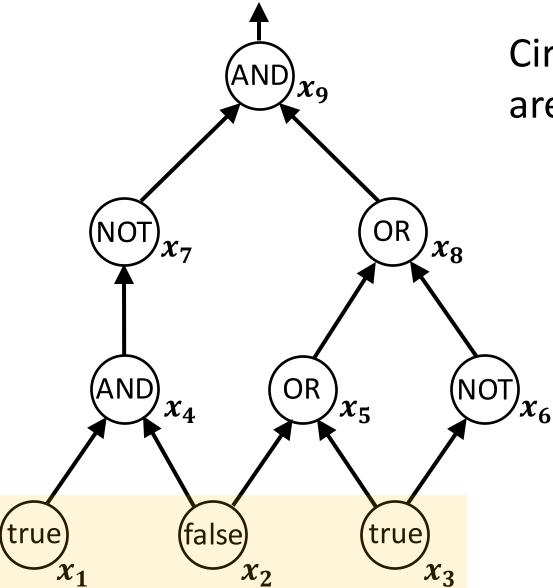


 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in \{0,1\}, \forall i$



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

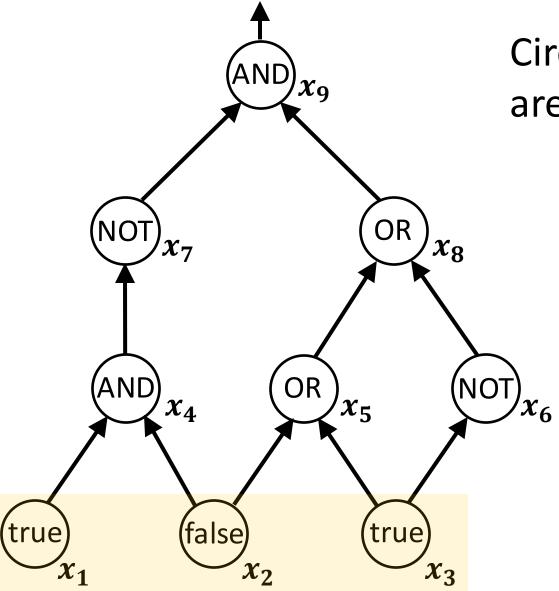
We need $x_i \in \{0, 1\}$, but maybe we can make that happen without forcing it to be an ILP.



 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$

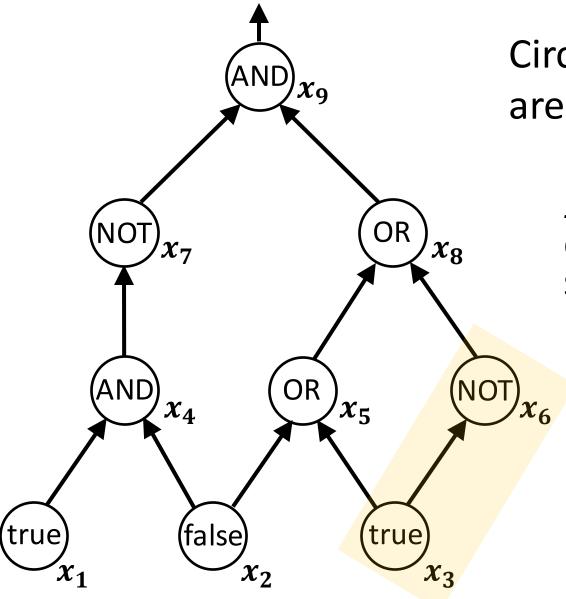
$$x_1 = ?$$

 $x_2 = ?$
 $x_3 = ?$

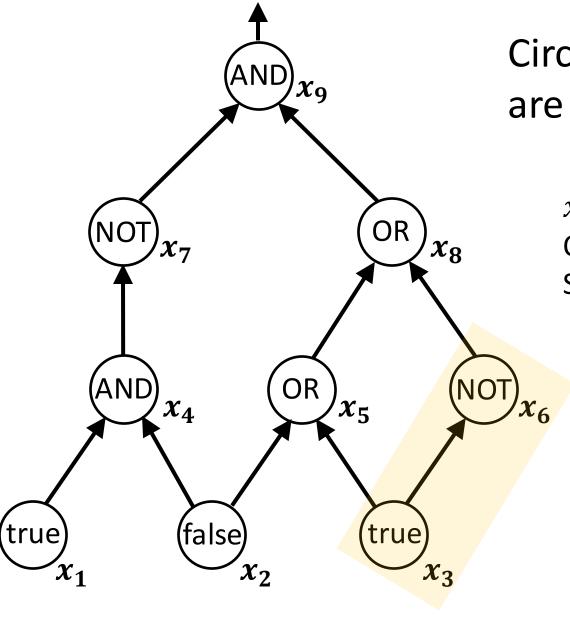


 $x_i = \text{gate's evaluated value}$ Objective: ?? $Subject to: x_i \in [0,1], \forall i$ $x_1 = 1$ $x_2 = 0$ $x_3 = 1$

In general, if gate i is initialized to true (or false), make $x_i = 1$ (or 0).



 $x_i = \text{gate's evaluated value}$ Objective: ?? $Subject to: x_i \in [0,1], \forall i$ $x_1 = 1$ $x_2 = 0$ $x_3 = 1$ $x_6 = ??$

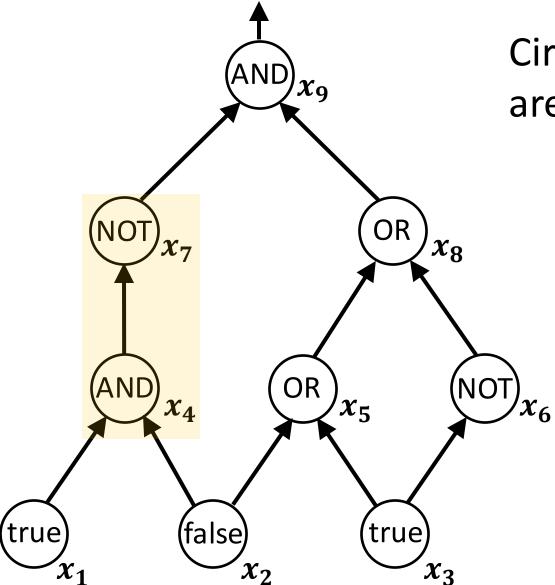


 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

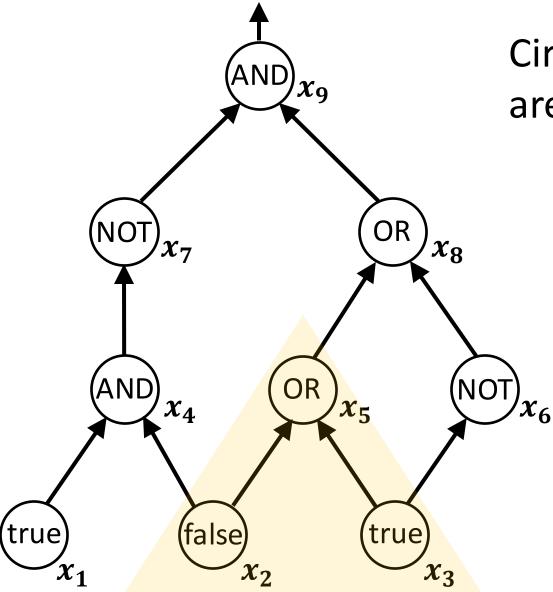
$$x_1 = 1$$

 $x_2 = 0$
 $x_3 = 1$
 $x_6 = 1 - x_3$

In general, if gate i is NOT gate j, make $x_i = 1 - x_j$



 $x_i = \text{gate's evaluated value}$ Objective: ?? $Subject to: x_i \in [0,1], \forall i$ $x_1 = 1$ $x_2 = 0$ $x_3 = 1$ $x_6 = 1 - x_3$ $x_7 = 1 - x_4$

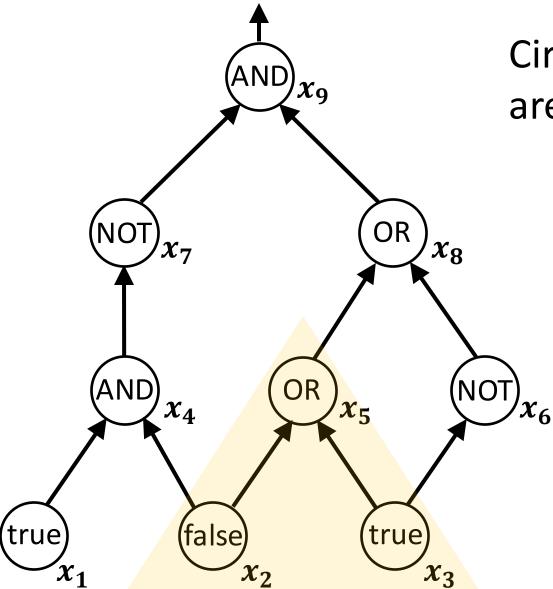


 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_1 \equiv 1$$
$$x_2 = 0$$
$$x_3 = 1$$

$$x_6 = 1 - x_3$$

 $x_7 = 1 - x_4$



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_{1} = 1$$

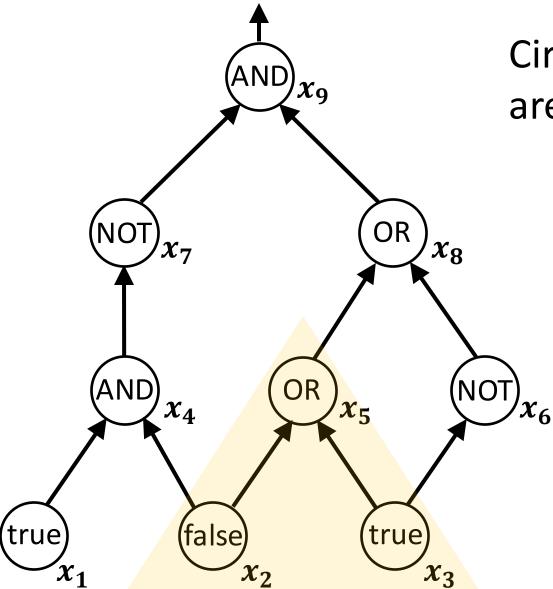
$$x_{2} = 0$$

$$x_{3} = 1$$

$$x_{6} = 1 - x_{3}$$

$$x_{7} = 1 - x_{4}$$

x _j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_{1} = 1$$

$$x_{2} = 0$$

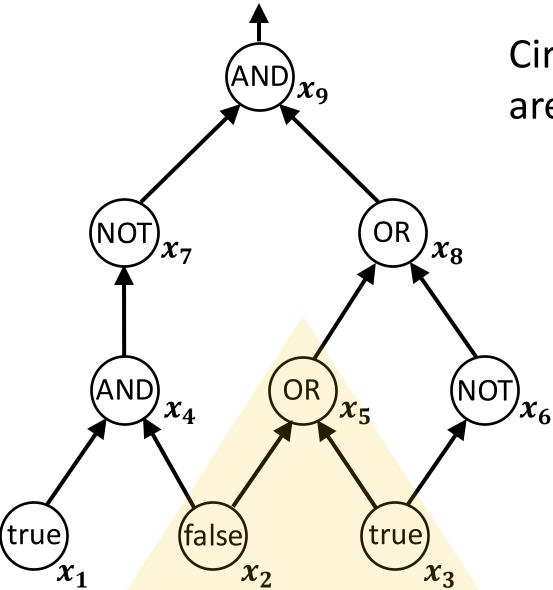
$$x_{3} = 1$$

$$x_{6} = 1 - x_{3}$$

$$x_{7} = 1 - x_{4}$$

 $x_5 \ge x_2$

x _j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_{1} = 1$$

$$x_{2} = 0$$

$$x_{3} = 1$$

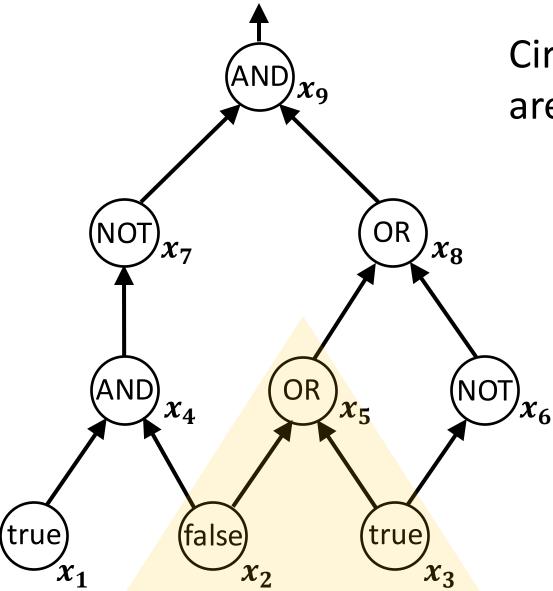
$$x_{6} = 1 - x_{3}$$

$$x_{7} = 1 - x_{4}$$

 $x_5 \ge x_2$

 $x_5 \ge x_3$

x _j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_1 = 1$$

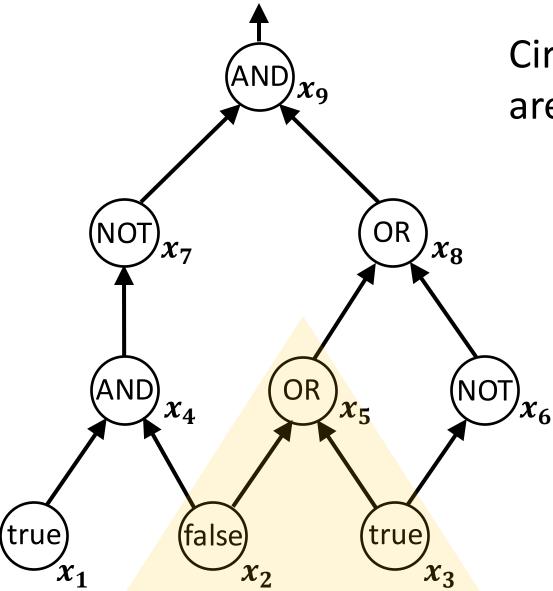
 $x_2 = 0$
 $x_3 = 1$
 $x_6 = 1 - x_3$
 $x_7 = 1 - x_4$

 $x_5 \ge x_2$

 $x_5 \ge x_3$

x_j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1

Is that enough?



 $x_i = \text{gate's evaluated value}$ Objective:??Subject to: $x_i \in [0,1], \forall i$

$$x_{1} = 1$$

$$x_{2} = 0$$

$$x_{3} = 1$$

$$x_{6} = 1 - x_{3}$$

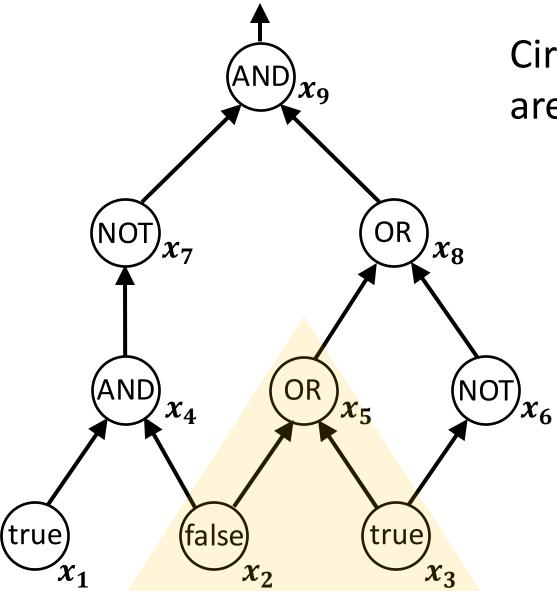
$$x_{7} = 1 - x_{4}$$

$$x_{5} \ge x_{2}$$

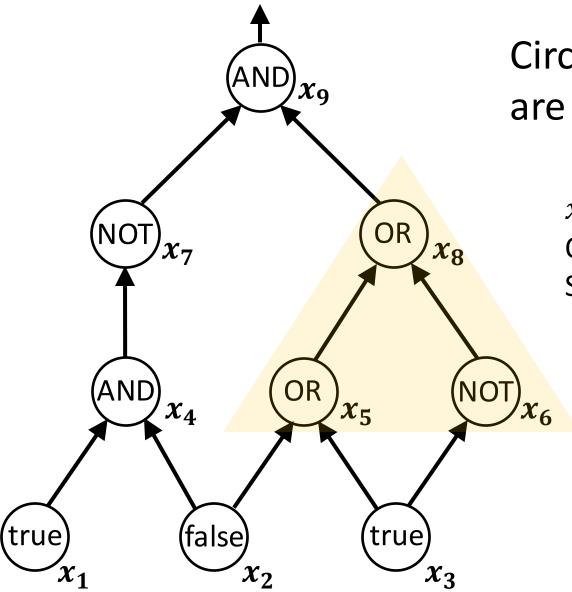
 $x_5 \ge x_3$

 $x_5 \le x_2 + x_3$

x _j	x_k	$x_i = x_j \text{ OR } x_k$
0	0	0
1	0	1
0	1	1
1	1	1

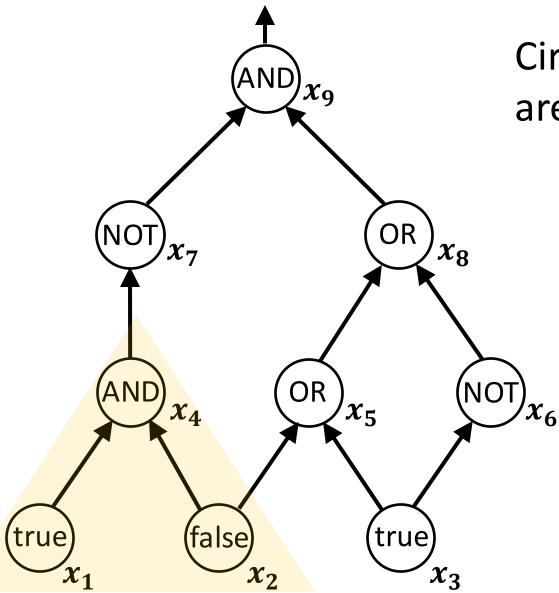


 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_1 = 1$ In general, if gate $x_2 = 0$ *i* is OR gates *j*, *k*: $x_3 = 1$ $x_6 = 1 - x_3$ $x_i \geq x_j$ $x_7 = 1 - x_4$ $x_i \geq x_k$ $x_i \leq x_i + x_k$ $x_5 \ge x_2$ $x_5 \ge x_3$ $x_5 \leq x_2 + x_3$

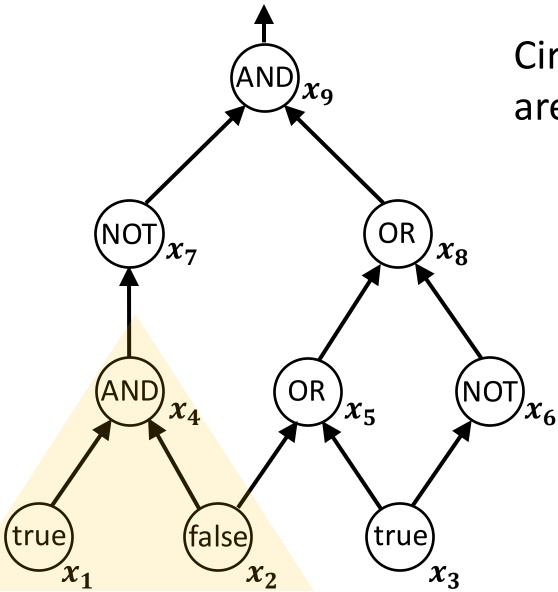


 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_6 = 1 - x_3$ $x_7 = 1 - x_4$ $x_5 \ge x_2$ $x_5 \ge x_3$

 $x_5 \le x_2 + x_3$

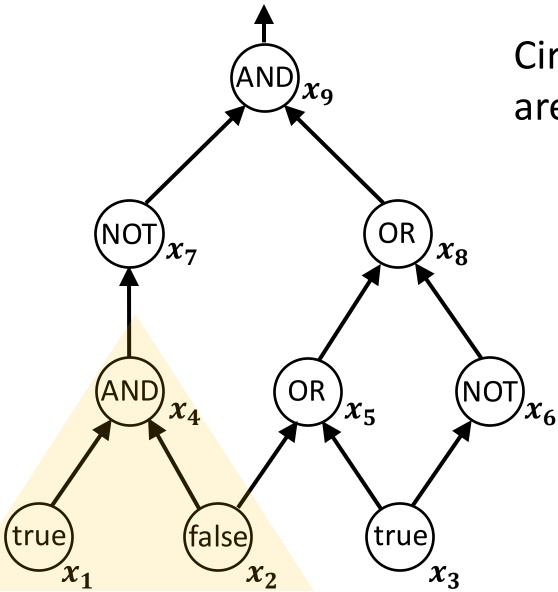


 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$?? $x_6 = 1 - x_3$ $x_7 = 1 - x_4$ $x_5 \ge x_2$ $x_5 \ge x_3$ $x_5 \leq x_2 + x_3$



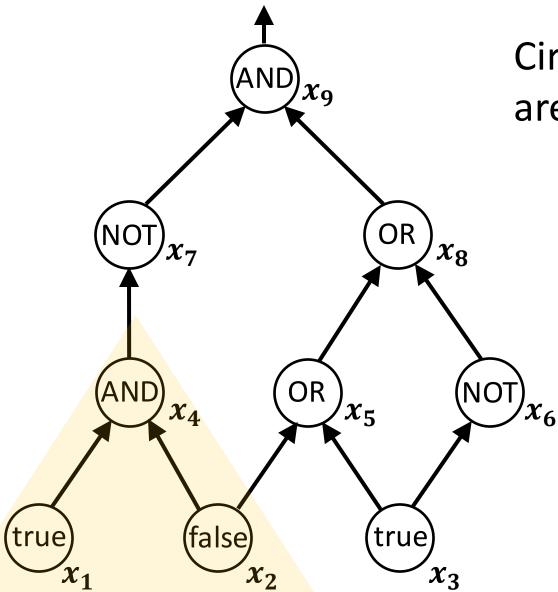
 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_4 \leq x_1$ $x_6 = 1 - x_3$ $x_7 = 1 - x_4$ $x_5 \ge x_2$ $x_5 \geq x_3$

$$x_5 \le x_2 + x_3$$



 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_4 \leq x_1$ $x_4 \leq x_2$ $x_6 = 1 - x_3$ $x_7 = 1 - x_4$ $x_5 \ge x_2$

 $x_5 \ge x_3$ $x_5 \le x_2 + x_3$

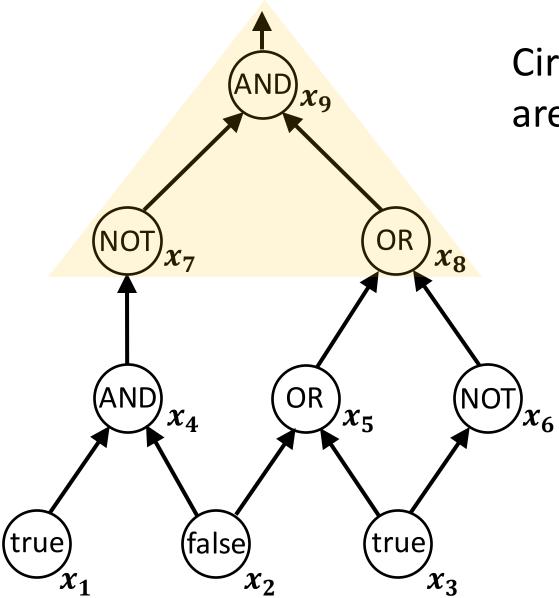


 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_4 \leq x_1$ $x_4 \leq x_2$ $x_6 = 1 - x_3$ $x_4 \ge x_1 + x_2 - 1$ $x_7 = 1 - x_4$

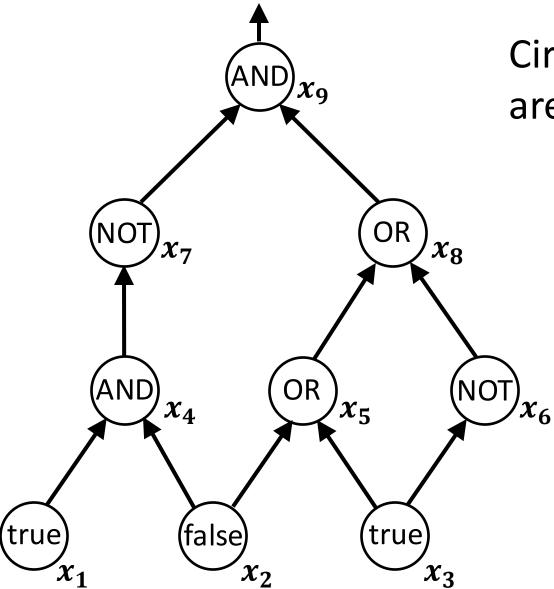
 $x_5 \ge x_2$

 $x_5 \ge x_3$

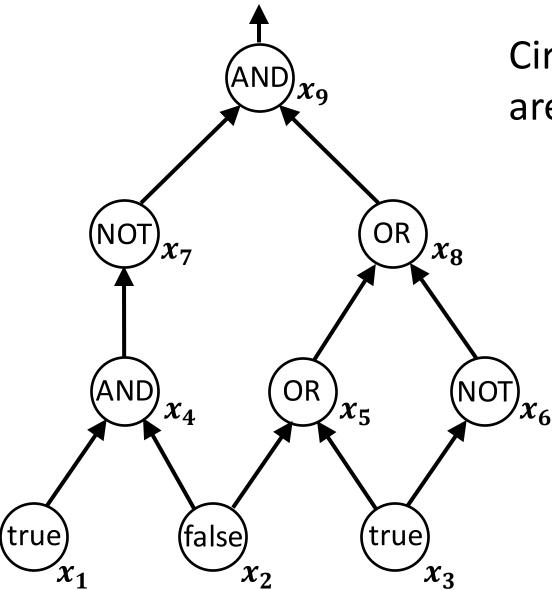
 $x_5 \leq x_2 + x_3$



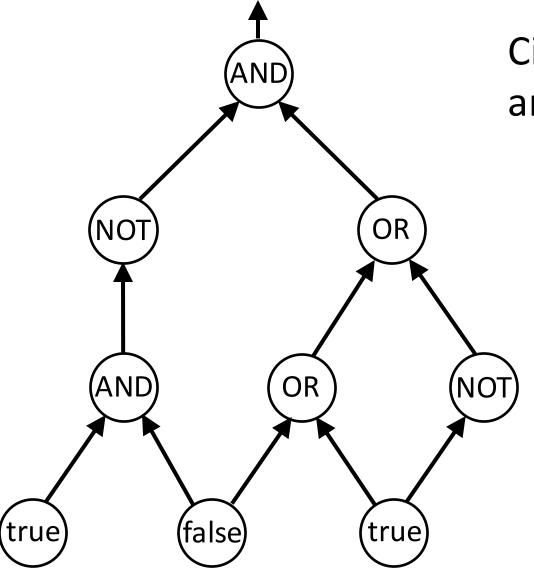
 $x_i = \text{gate's evaluated value}$ Objective: ?? Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_4 \leq x_1$ $x_4 \leq x_2$ $x_6 = 1 - x_3$ $x_4 \ge x_1 + x_2 - 1$ $x_7 = 1 - x_4$ $x_9 \leq x_7$ $x_5 \ge x_2$ $x_9 \leq x_8$ $x_5 \ge x_3$ $x_9 \ge x_7 + x_8 - 1$ $x_5 \leq x_2 + x_3$

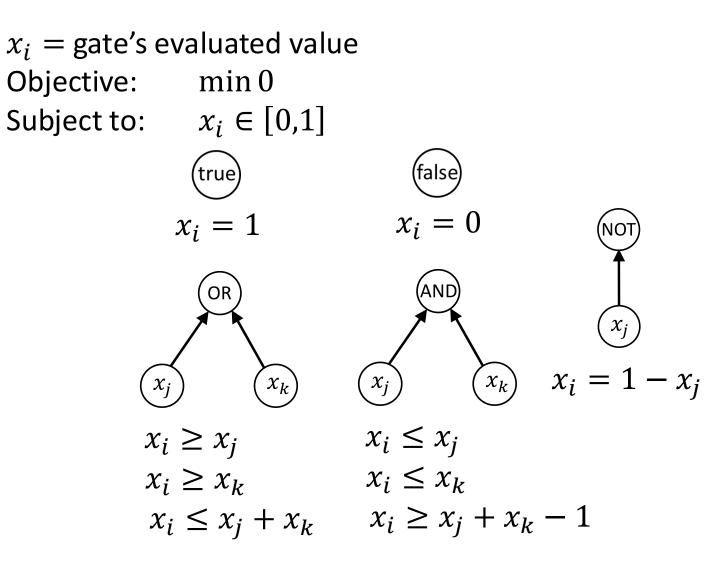


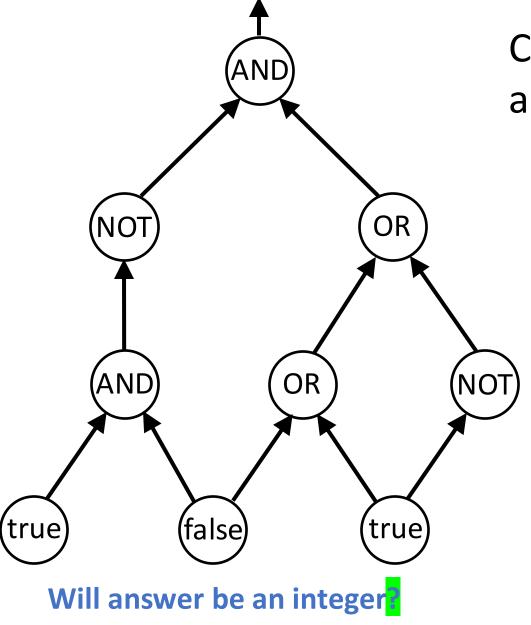
$x_i = gate's ev$	aluated value	
Objective:	<mark>??</mark>	
Subject to:	$x_i \in [0,1], \forall i$	$x_8 \ge x_5$
	$x_1 = 1$	$x_8 \ge x_6$
	$x_{2}^{1} = 0$	$x_8 \le x_5 + x_6$
	$x_3 = 1$	$x_4 \leq x_1$
	$x_6 = 1 - x_3$	$x_4 \leq x_2$
	$x_7 = 1 - x_4$	$x_4 \ge x_1 + x_2 - 1$
	· · ·	$x_9 \leq x_7$
	$x_5 \ge x_2$	$x_9 \leq x_8$
	$x_5 \ge x_3$	$x_9 \ge x_7 + x_8 - 1$
	$x_5 \le x_2 + x_3$	<i>y</i> = <i>y</i> 0

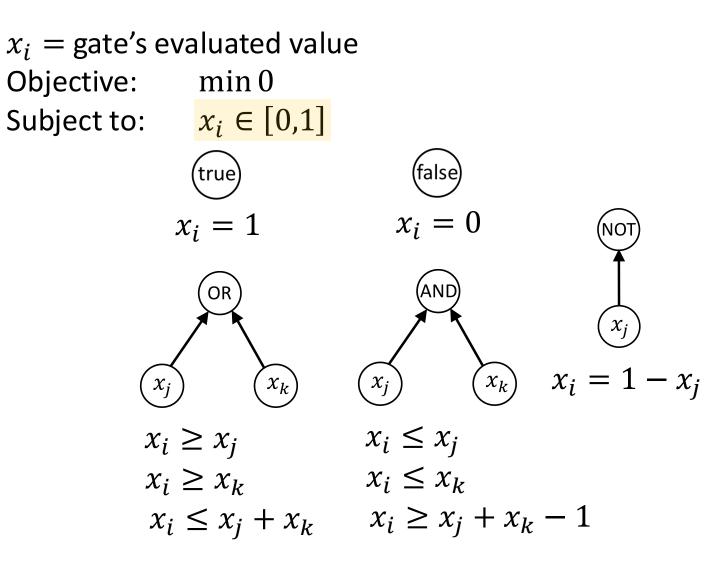


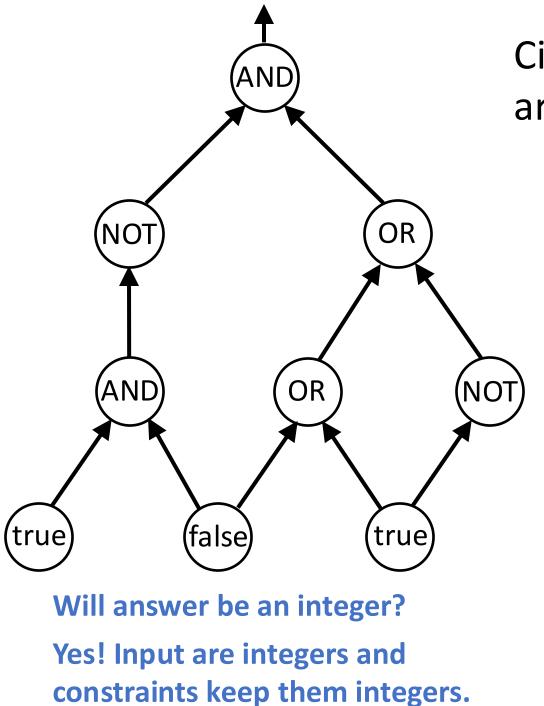
 $x_i = \text{gate's evaluated value}$ Objective: min 0 Subject to: $x_i \in [0,1], \forall i$ $x_8 \ge x_5$ $x_8 \ge x_6$ $x_1 = 1$ $x_8 \le x_5 + x_6$ $x_2 = 0$ $x_3 = 1$ $x_4 \leq x_1$ $x_4 \leq x_2$ $x_6 = 1 - x_3$ $x_4 \ge x_1 + x_2 - 1$ $x_7 = 1 - x_4$ $x_9 \leq x_7$ $x_5 \ge x_2$ $x_9 \leq x_8$ $x_5 \ge x_3$ $x_9 \ge x_7 + x_8 - 1$ $x_5 \leq x_2 + x_3$

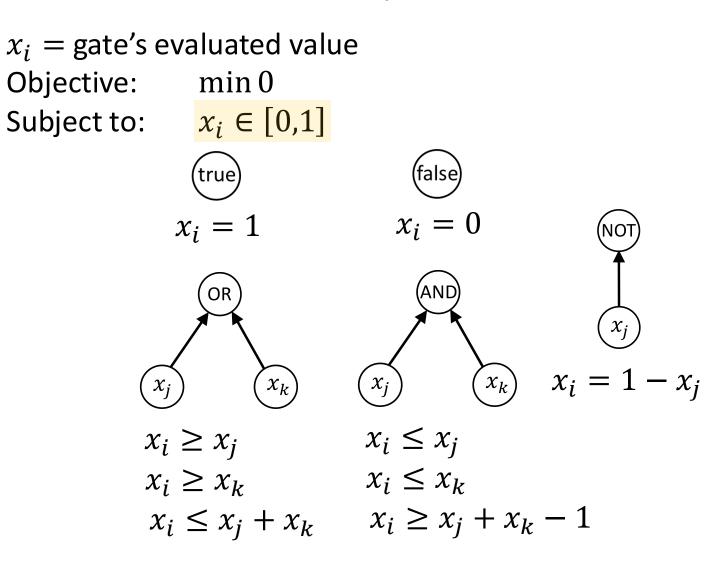


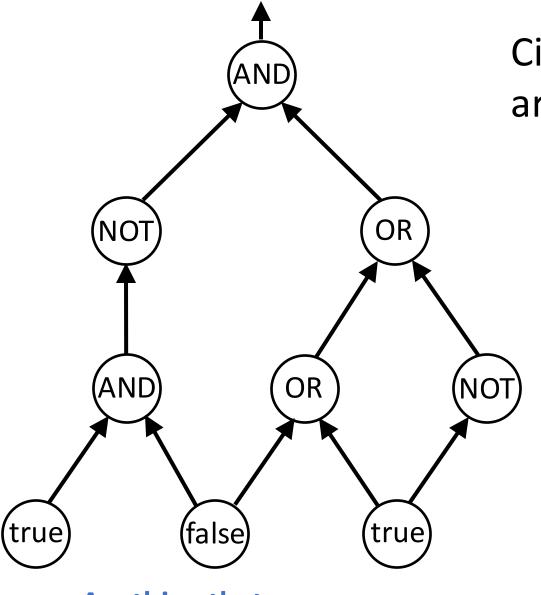




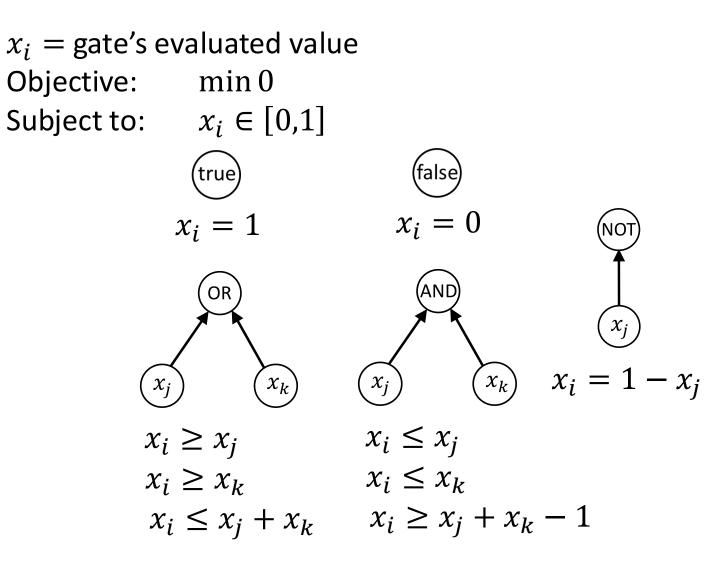








Anything that can run on a computer in poly time can be solved with an LP in poly time!



Primal

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

<u>Dual</u>

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

Objective: Subject to:

$$\max 100x_1 + 300x_2 + 150x_3 x_2 \le 20 x_1 + x_2 + x_3 \le 40 2x_1 + x_3 \le 60 C$$

Objective: Subject to:

 $\min 20y_1 + 40y_2 + 60y_3$ $y_2 + 2y_3 \ge 100$ $y_1 + y_2 \ge 300$ $y_2 + y_3 \ge 150$ $y_1, y_2, y_3 \ge 0$

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Dual

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

<u>Theorem</u>: If \overline{x} is the optimal solution to the primal and \overline{y} is the optimal solution to the dual, then $c^T \overline{x} = b^T \overline{y}$.

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Maximum Flow

<u>Dual</u>

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

<u>Theorem:</u> The dual of a dual is the original primal.

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

<u>Theorem</u>: If \overline{x} is the optimal solution to the primal and \overline{y} is the optimal solution to the dual, then $c^T \overline{x} = b^T \overline{y}$.

<u>Primal</u>

Objective: max $c^T x$ Subject to: A $x \le b$ $x \ge 0$

Maximum Flow

<u>Dual</u>

Objective: min $b^T y$ Subject to: $A^T y \ge c$ $y \ge 0$

Minimum Cut

<u>Theorem:</u> The dual of a dual is the original primal.

<u>Theorem</u>: If \overline{x} is any feasible solution to the primal and \overline{y} is any feasible solution to the dual, then $c^T \overline{x} \leq b^T \overline{y}$.

<u>Theorem</u>: If \overline{x} is the optimal solution to the primal and \overline{y} is the optimal solution to the dual, then $c^T \overline{x} = b^T \overline{y}$.