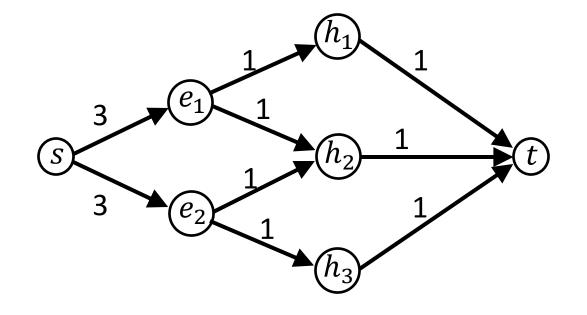
Test 2 Review CSCI 432

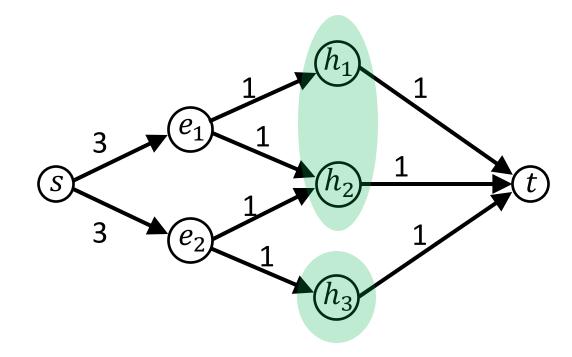
Test 2 Logistics

- 1. During class on Thursday 4/3.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Flow network (5 points).
 - 2) Linear program (9 points).
 - 3) Other (1 point).


Test 2 Logistics

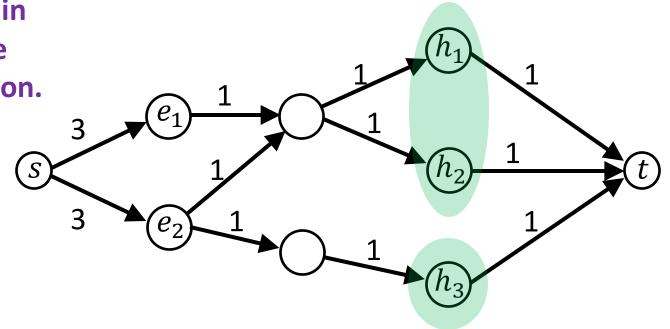
- 1. During class on Thursday 4/3.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Flow network (5 points).
 - 2) Linear program (9 points).
 - 3) Other (1 point).

<u>Problem:</u> We need to make holiday schedules for our employees. Each employee has a set of holidays that they are able to work. Each employee should work at most 3 holidays. We want to maximize the number of holidays covered.


Algorithm:

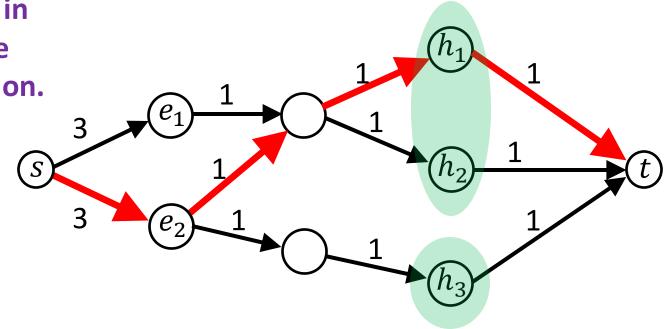
- 1. Build flow network:
 - a) Make a node for each employee, a node for each holiday, a source, and a sink.
 - b) Connect the source to each employee node with a capacity of 3.
 - c) Connect each holiday node to the sink with a capacity of 1.
 - d) If an employee is able to work a holiday, connect them with a capacity of 1.
- 2. Find Max Flow.
- 3. If employee has outgoing edge carrying flow, assign them to work that holiday.

<u>Problem:</u> We need to make holiday schedules for our employees. Each employee has a set of holidays that they are able to work. Each employee should work at most 3 holiday days. Also, employees should not work more than one day in the same holiday period (e.g. Thanksgiving weekend). We want to maximize the number of holidays covered.


Holiday Period	Holiday	Available Employees
Thanksgiving	h_1	e_1
	h_2	<i>e</i> ₁ , <i>e</i> ₂
Halloween	h_3	<i>e</i> ₂

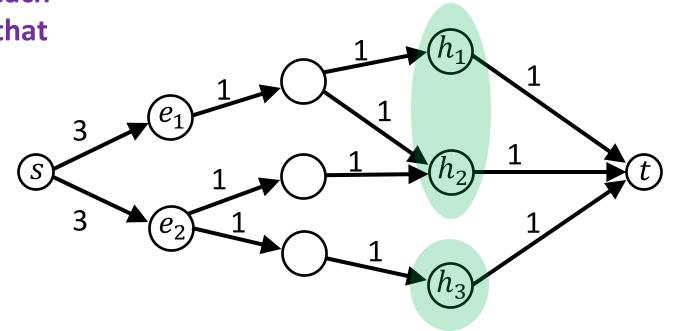
<u>Problem:</u> We need to make holiday schedules for our employees. Each employee has a set of holidays that they are able to work. Each employee should work at most 3 holiday days. Also, employees should not work more than one day in the same holiday period (e.g. Thanksgiving weekend). We want to maximize the number of holidays covered.

Make a node for each holiday period. Make edge between new node and each holiday in that period. Make edge between employee and period with holiday they are available on.


Holiday Period	Holiday	Available Employees
Thanksgiving	h_1	<i>e</i> ₁
	h_2	<i>e</i> ₁ , <i>e</i> ₂
Halloween	h_3	<i>e</i> ₂

<u>Problem:</u> We need to make holiday schedules for our employees. Each employee has a set of holidays that they are able to work. Each employee should work at most 3 holiday days. Also, employees should not work more than one day in the same holiday period (e.g. Thanksgiving weekend). We want to maximize the number of holidays covered.

Make a node for each holiday period. Make edge between new node and each holiday in that period. Make edge between employee and period with holiday they are available on.


Holiday Period	Holiday	Available Employees
Thanksgiving	h_1	<i>e</i> ₁
	h_2	<i>e</i> ₁ , <i>e</i> ₂
Halloween	h_3	<i>e</i> ₂

<u>Problem:</u> We need to make holiday schedules for our employees. Each employee has a set of holidays that they are able to work. Each employee should work at most 3 holiday days. Also, employees should not work more than one day in the same holiday period (e.g. Thanksgiving weekend). We want to maximize the number of holidays covered.

Make a node for each holiday period and each employee that is available on a holiday in that period...

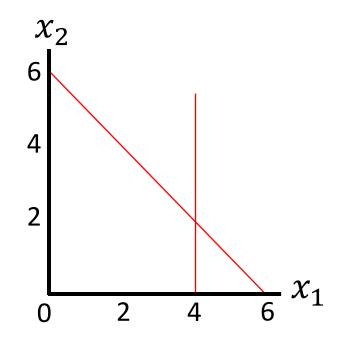
Holiday Period	Holiday	Available Employees
Thanksgiving	h_1	<i>e</i> ₁
	h_2	e ₁ , e ₂
Halloween	h_3	<i>e</i> ₂

Test 2 Logistics

- 1. During class on Thursday 4/3.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 1) Flow network (5 points).
 2) Linear program (9 points).
 3) Other (1 point).

> $x_1 = #$ servings of ice cream $x_2 = #$ servings of pizza

> $x_1 =$ # servings of ice cream $x_2 =$ # servings of pizza


Objective: $\max 2x_1 + x_2$

 $x_1 = #$ servings of ice cream $x_2 = #$ servings of pizzaObjective: $\max 2x_1 + x_2$ Subject to: $x_1 + x_2 \le 6$ $x_1 \le 4$

 $x_1 = \#$ servings of ice cream $x_2 = \#$ servings of pizzaObjective: $\max 2x_1 + x_2$ Subject to: $x_1 + x_2 \le 6$ $x_1 \le 4$ $x_1, x_2 \ge 0$

 $x_1 = \#$ servings of ice cream $x_2 = \#$ servings of pizzaObjective: $\max 2x_1 + x_2$ Subject to: $x_1 + x_2 \le 6$ $x_1 \le 4$ $x_1, x_2 \ge 0$

Prove that an optimal solution to the the linear program will be integer, even if the objective function changes.

 $\begin{array}{l} x_1 = \# \mbox{ servings of ice cream} \\ x_2 = \# \mbox{ servings of pizza} \\ \mbox{Objective:} & \max 2x_1 + x_2 \\ \mbox{Subject to:} & x_1 + x_2 \leq 6 \\ & x_1 \leq 4 \\ & x_1, x_2 \geq 0 \end{array}$

Prove that an optimal solution to the the linear program will be integer, even if the objective function changes.