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𝑷 is the set of problems that are 
solvable by an algorithm whose 
running time is polynomial time.

𝑁𝑃 Set of problems that are verifiable in 
polynomial time.



𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there 
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.



𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there 
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example: 

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27  that sums to 25?



𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there 
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example: 

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27  that sums to 25?

Yes, 4 + 21 = 25. 
      



𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there 
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example: 

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27  that sums to 25?

Yes, 4 + 21 = 25. 

    How do we verify 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 answers?



P=NP
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polynomial time.
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PHow does P 
relate to NP? Or
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𝑁𝑃
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Set of problems in NP whose algorithms 
can solve any other problem in NP with 
polynomial extra time.

Interesting Properties:
• A polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem gives a 

polynomial time algorithm for every problem in NP (i.e., 𝑃 = 𝑁𝑃)…

• … including all the other 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problems.

• The thing that makes one NP-C problem (possibly) unsolvable in 
polynomial time is the exact same thing that makes every other NP-C 
problem (possibly) unsolvable in polynomial time.



Handling NP-Completeness

Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms. 

NP

PNP-C
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Approximation Algorithms

ALG ≤ α OPT

Cost (size) of 
algorithm’s solution.

Cost (size) of 
optimal solution.

Approximation 
Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

  Then, I know that 746.125 ≤ 1.12 OPT 

   ⇒
746.125

1.12
 = 666.183 ≤ OPT ≤ 746.125

For a minimization 
problem.
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a relationship between the minimum vertex cover and |𝐸’|?

         |𝐸’| ≤ OPT
Size of actual smallest vertex cover.

If we selected fewer than one vertex per 
edge, we would not have a vertex cover, 
because that edge would not be covered!
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Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there 
a relationship between the minimum vertex cover and |𝐸’|?

         |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that 
do not share vertices?
         ALG = 2 |𝐸’| 

    ⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

We cannot find optimal vertex covers in 
poly time unless 𝑃 = 𝑁𝑃, but this 
algorithm is at worst 2-times optimal.
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Vertex Cover

of arbitrary size
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ALG
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2
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2
 nodes selected ⇒

∃ unselected edge. OPT
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while uncovered edge exists
 select both vertices from uncovered edge

    ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do? 
 I.e. Can we guarantee this algorithm does better than 2 OPT? 
 Is there a graph where this algorithm does exactly 2 OPT?

Complete 
Bipartite Graph

Vertex Cover

ALG OPT

∴ The best Vertex Cover 
can be approximated is 
within a factor of 2

Vertex Cover is approximable within the 

bound 2 −
log log 𝑉

2 log 𝑉
 and inapproximable 

within the bound 1.3606.



Computability Hierarchy

Complexity Hierarchy



Approximability Hierarchy



NPO

Approximability Hierarchy

- Optimization versions of problems in NP.



APX

NPO

Approximability Hierarchy

- Approximable within 
a constant factor.

ALG ≤ α OPT
constant



APX

VC

NPO

Approximability Hierarchy
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