
Approximation Algorithms
CSCI 432

𝑃
𝑷 is the set of problems that are
solvable by an algorithm whose
running time is polynomial time.

𝑃
𝑷 is the set of problems that are
solvable by an algorithm whose
running time is polynomial time.

How do you show a problem is in the set 𝑃?

𝑃
𝑷 is the set of problems that are
solvable by an algorithm whose
running time is polynomial time.

How do you show a problem is in the set 𝑃?
 Solve it in polynomial time.

𝑃
𝑷 is the set of problems that are
solvable by an algorithm whose
running time is polynomial time.

𝑁𝑃 Set of problems that are verifiable in
polynomial time.

𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example:

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27 that sums to 25?

𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example:

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27 that sums to 25?

Yes, 4 + 21 = 25.

𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀

Claim: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 = ሼ
ሽ

𝑆, 𝑡 : 𝑆 = 𝑥1, … , 𝑥𝑛 , and there
exists some 𝑦1, … , 𝑦𝑚 ⊆ 𝑆 such that σ 𝑦𝑖 = 𝑡 ∈ 𝑁𝑃.

Example:

4, 11, 16, 21, 27 , 25

Is there a subset of 4, 11, 16, 21, 27 that sums to 25?

Yes, 4 + 21 = 25.

 How do we verify 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 answers?

P=NP

𝑃
𝑷 is the set of problems that are
solvable by an algorithm whose
running time is polynomial time.

𝑁𝑃 Set of problems that are verifiable in
polynomial time.

NP

PHow does P
relate to NP? Or

𝑁𝑃
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Set of problems in NP whose algorithms
can solve any other problem in NP with
polynomial extra time.

𝑃
𝑁𝑃

𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

𝑁𝑃
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Set of problems in NP whose algorithms
can solve any other problem in NP with
polynomial extra time.

Interesting Properties:
• A polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem gives a

polynomial time algorithm for every problem in NP (i.e., 𝑃 = 𝑁𝑃)…

𝑁𝑃
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Set of problems in NP whose algorithms
can solve any other problem in NP with
polynomial extra time.

Interesting Properties:
• A polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem gives a

polynomial time algorithm for every problem in NP (i.e., 𝑃 = 𝑁𝑃)…

• … including all the other 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problems.

𝑁𝑃
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Set of problems in NP whose algorithms
can solve any other problem in NP with
polynomial extra time.

Interesting Properties:
• A polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem gives a

polynomial time algorithm for every problem in NP (i.e., 𝑃 = 𝑁𝑃)…

• … including all the other 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problems.

• The thing that makes one NP-C problem (possibly) unsolvable in
polynomial time is the exact same thing that makes every other NP-C
problem (possibly) unsolvable in polynomial time.

Handling NP-Completeness

Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms.

NP

PNP-C

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm,
the cost of the pizza it finds is at most 1.25 times the optimal cost.

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm,
the cost of the pizza it finds is at most 1.25 times the optimal cost.

I.e. If the cheapest pizza in Bozeman is $2.00/slice, CheapestPizzaInBozeman will find
pizza that is at most $2.50/slice.

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm,
the cost of the pizza it finds is at most 1.25 times the optimal cost.

I.e. If the cheapest pizza in Bozeman is $2.00/slice, CheapestPizzaInBozeman will find
pizza that is at most $2.50/slice.

Note: if problem is a maximization problem, ALG ≥
1

α
 OPT

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

 Then, I know that 746.125 ≤ 1.12 OPT

For a minimization
problem.

Approximation Algorithms

ALG ≤ α OPT

Cost (size) of
algorithm’s solution.

Cost (size) of
optimal solution.

Approximation
Ratio

Example:
• Suppose I know my algorithm is a 1.12-approximation algorithm.
• Suppose my algorithm returns a solution of cost (size) 746.125.

 Then, I know that 746.125 ≤ 1.12 OPT

 ⇒
746.125

1.12
 = 666.183 ≤ OPT ≤ 746.125

For a minimization
problem.

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

✓ 

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

?

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices.

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT
Size of actual smallest vertex cover.

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT
Size of actual smallest vertex cover.

If we selected fewer than one vertex per
edge, we would not have a vertex cover,
because that edge would not be covered!

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?
 ALG = 2 |𝐸’|

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?
 ALG = 2 |𝐸’|

 ⟹ ALG = 2 |𝐸’|

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?
 ALG = 2 |𝐸’|

 ⟹ ALG = 2 |𝐸’| ≤ 2 OPT

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?
 ALG = 2 |𝐸’|

 ⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there
a relationship between the minimum vertex cover and |𝐸’|?

 |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that
do not share vertices?
 ALG = 2 |𝐸’|

 ⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT

We cannot find optimal vertex covers in
poly time unless 𝑃 = 𝑁𝑃, but this
algorithm is at worst 2-times optimal.

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover

ALG OPT

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

ALG OPT

Vertex Cover

of arbitrary size

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover

ALG OPT

Complete
Bipartite Graph

ALG?

OPT?

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

OPT

Vertex Cover

ALG

|ALG|= 𝑛: If 𝑣 is not selected, all neighbors

are ⇒
𝑛

2
 edges are selected ⇒ all 𝑛 vertices

are selected.

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

Vertex Cover

ALG

|ALG|= 𝑛: If 𝑣 is not selected, all neighbors

are ⇒
𝑛

2
 edges are selected ⇒ all 𝑛 vertices

are selected.

|OPT|=
𝑛

2
: Fewer than

𝑛

2
 nodes selected ⇒

∃ unselected edge. OPT

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

Vertex Cover

ALG OPT

∴ The best Vertex Cover
can be approximated is
within a factor of 2

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

Vertex Cover

ALG OPT

∴ The best Vertex Cover
can be approximated is
within a factor of 2

while uncovered edge exists
 select both vertices from uncovered edge

 ⟹ ALG ≤ 2 OPT

Is this the best this algorithm can do?
 I.e. Can we guarantee this algorithm does better than 2 OPT?
 Is there a graph where this algorithm does exactly 2 OPT?

Complete
Bipartite Graph

Vertex Cover

ALG OPT

∴ The best Vertex Cover
can be approximated is
within a factor of 2

Vertex Cover is approximable within the

bound 2 −
log log 𝑉

2 log 𝑉
 and inapproximable

within the bound 1.3606.

Computability Hierarchy

Complexity Hierarchy

Approximability Hierarchy

NPO

Approximability Hierarchy

- Optimization versions of problems in NP.

APX

NPO

Approximability Hierarchy

- Approximable within
a constant factor.

ALG ≤ α OPT
constant

APX

VC

NPO

Approximability Hierarchy

	Slide 1: Approximation Algorithms CSCI 432
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: S U B S E T S U M
	Slide 7: S U B S E T S U M
	Slide 8: S U B S E T S U M
	Slide 9: S U B S E T S U M
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Handling NP-Completeness
	Slide 16: Approximation Algorithms
	Slide 17: Approximation Algorithms
	Slide 18: Approximation Algorithms
	Slide 19: Approximation Algorithms
	Slide 20: Approximation Algorithms
	Slide 21: Approximation Algorithms
	Slide 22: Approximation Algorithms
	Slide 23: Approximation Algorithms
	Slide 24: Approximation Algorithms
	Slide 25: Vertex Cover
	Slide 26: Vertex Cover
	Slide 27: Vertex Cover
	Slide 28: Vertex Cover
	Slide 29: Vertex Cover
	Slide 30: Vertex Cover
	Slide 31: Vertex Cover
	Slide 32: Vertex Cover
	Slide 33: Vertex Cover
	Slide 34: Vertex Cover
	Slide 35: Vertex Cover
	Slide 36: Vertex Cover
	Slide 37: Vertex Cover
	Slide 38: Vertex Cover
	Slide 39: Vertex Cover
	Slide 40: Vertex Cover
	Slide 41: Vertex Cover
	Slide 42: Vertex Cover
	Slide 43: Vertex Cover
	Slide 44: Vertex Cover
	Slide 45: Vertex Cover
	Slide 46: Vertex Cover
	Slide 47: Vertex Cover
	Slide 48: Vertex Cover
	Slide 49: Vertex Cover
	Slide 50: Vertex Cover
	Slide 51: Vertex Cover
	Slide 52: Vertex Cover
	Slide 53: Vertex Cover
	Slide 54: Vertex Cover
	Slide 55
	Slide 56: Approximability Hierarchy
	Slide 57: Approximability Hierarchy
	Slide 58: Approximability Hierarchy
	Slide 59: Approximability Hierarchy

