Approximation Algorithms CSCI 432

How do you show a problem is in the set *P*?

How do you show a problem is in the set *P*? Solve it in polynomial time.

NP - Set of problems that are verifiable in polynomial time.

SUBSET - SUM

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}, \text{ and there}$ exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

SUBSET – SUM

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}, \text{ and there}$ exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Example:

({4, 11, 16, 21, 27}, 25**)**

Is there a subset of {4, 11, 16, 21, 27} that sums to 25?

SUBSET – SUM

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}, \text{ and there}$ exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Example:

({4, 11, 16, 21, 27}, 25**)**

Is there a subset of {4, 11, 16, 21, 27} that sums to 25?

Yes, 4 + 21 = 25.

SUBSET – SUM

Claim: $SUBSET - SUM = \{\langle S, t \rangle : S = \{x_1, ..., x_n\}, \text{ and there}$ exists some $\{y_1, ..., y_m\} \subseteq S$ such that $\sum y_i = t\} \in NP$.

Example:

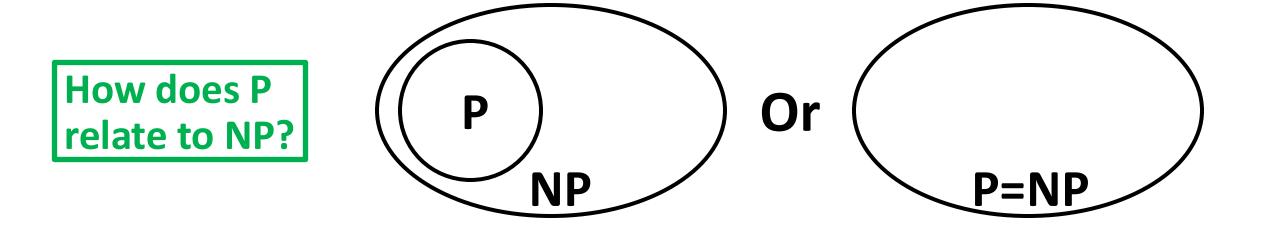
({4, 11, 16, 21, 27}, 25**)**

Is there a subset of {4, 11, 16, 21, 27} that sums to 25?

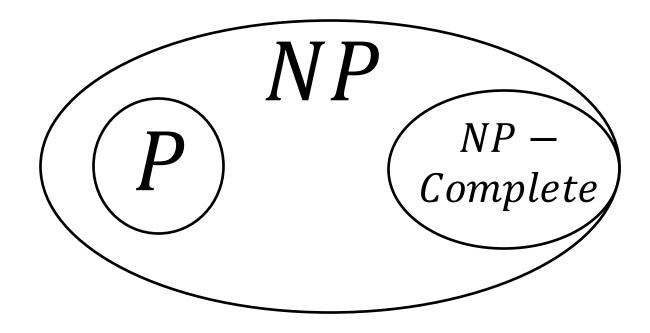
Yes, 4 + 21 = 25.

How do we verify *SUBSET* – *SUM* answers?

$NP - \begin{cases} Set of problems that are verifiable in polynomial time. \end{cases}$



NPSet of problems in NP whose algorithms
can solve any other problem in NP with
polynomial extra time.



NP Set of problems in NP whose algorithms can solve any other problem in NP with polynomial extra time.

Interesting Properties:

• A polynomial time algorithm for *any* NP - Complete problem gives a polynomial time algorithm for *every* problem in NP (i.e., P = NP)...

NP Set of problems in NP whose algorithms can solve any other problem in NP with polynomial extra time.

Interesting Properties:

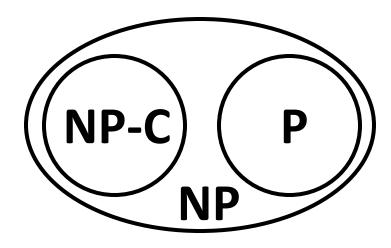
- A polynomial time algorithm for *any* NP Complete problem gives a polynomial time algorithm for *every* problem in NP (i.e., P = NP)...
- ... including all the other *NP Complete* problems.

NP Set of problems in NP whose algorithms can solve any other problem in NP with polynomial extra time.

Interesting Properties:

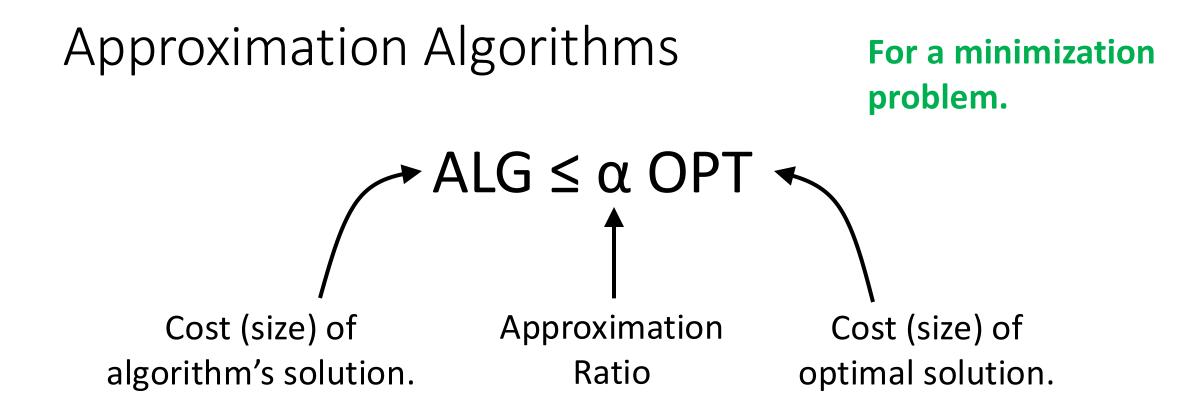
- A polynomial time algorithm for *any* NP Complete problem gives a polynomial time algorithm for *every* problem in NP (i.e., P = NP)...
- ... including all the other *NP Complete* problems.
- The thing that makes one NP-C problem (possibly) unsolvable in polynomial time is the exact same thing that makes every other NP-C problem (possibly) unsolvable in polynomial time.

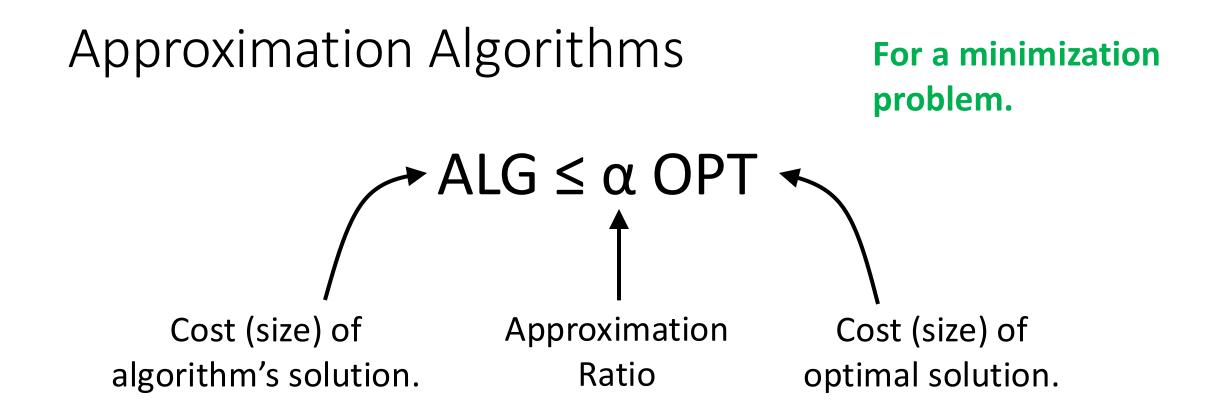
Handling NP-Completeness



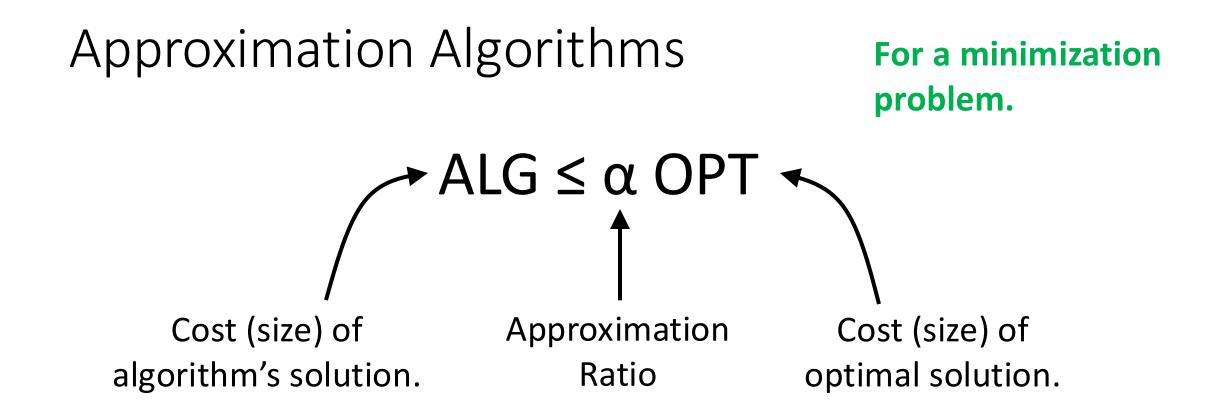
Techniques to handle NP-Complete problems:

- 1. Brute Force (i.e. Exponential Time).
- 2. Heuristics.
- 3. Approximation Algorithms.
- 4. Fixed-parameter Tractable Algorithms.



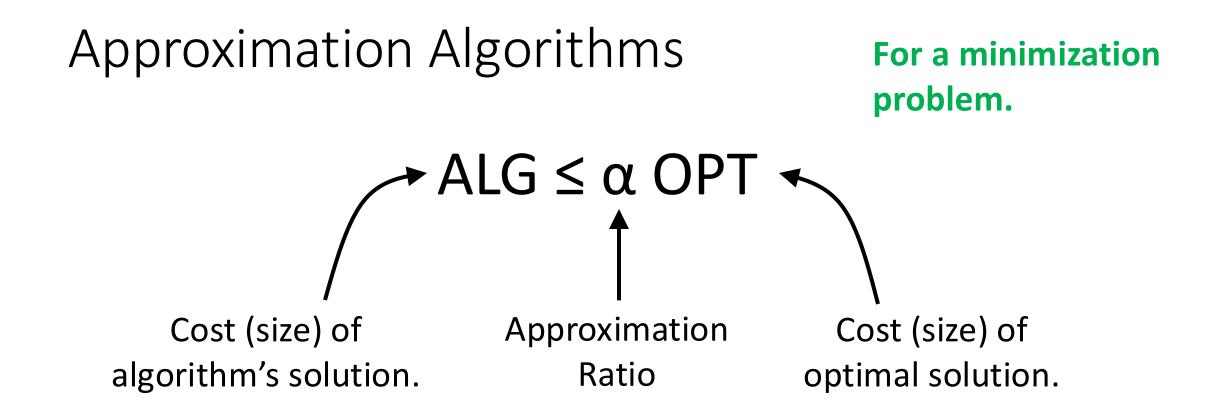


Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm, the cost of the pizza it finds is at most 1.25 times the optimal cost.



Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm, the cost of the pizza it finds is at most 1.25 times the optimal cost.

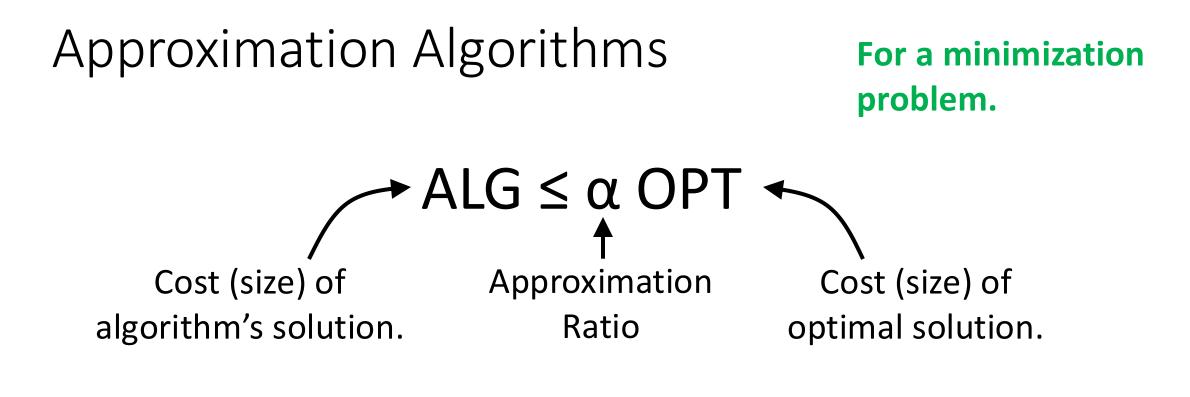
I.e. If the cheapest pizza in Bozeman is \$2.00/slice, CheapestPizzaInBozeman will find pizza that is at most \$2.50/slice.

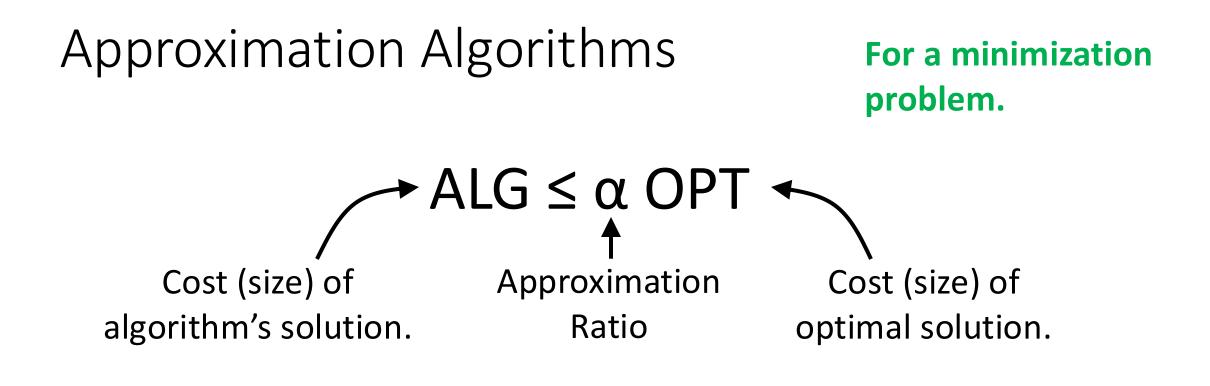


Example: If my CheapestPizzaInBozeman algorithm is a 1.25-approximation algorithm, the cost of the pizza it finds is at most 1.25 times the optimal cost.

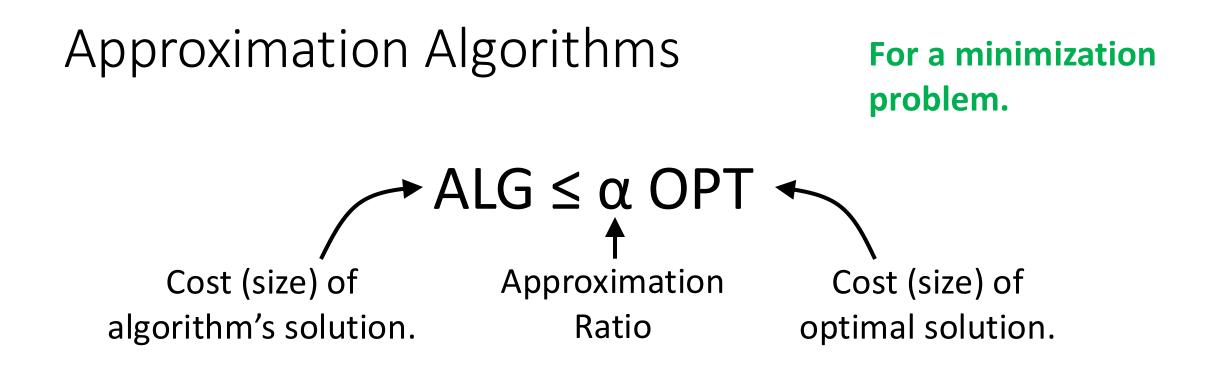
I.e. If the cheapest pizza in Bozeman is \$2.00/slice, CheapestPizzaInBozeman will find pizza that is at most \$2.50/slice.

Note: if problem is a maximization problem, ALG $\geq \frac{1}{\alpha}$ OPT

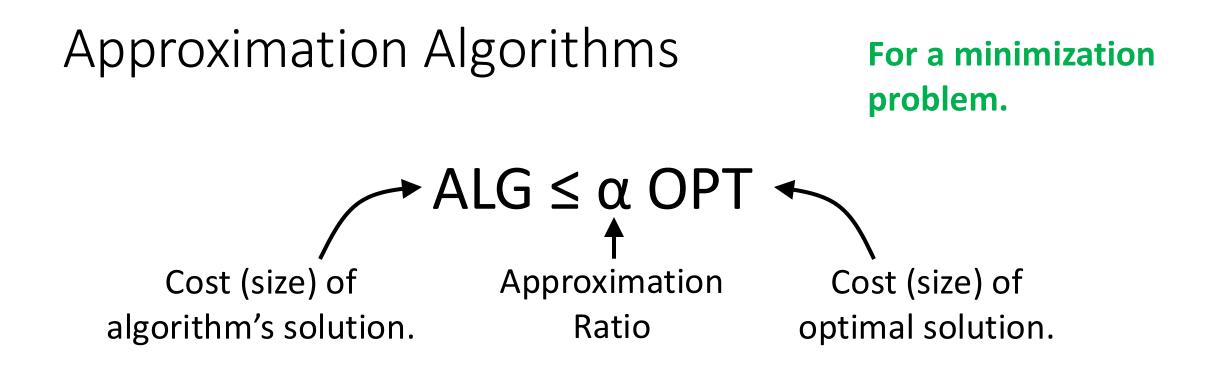




• Suppose I know my algorithm is a 1.12-approximation algorithm.

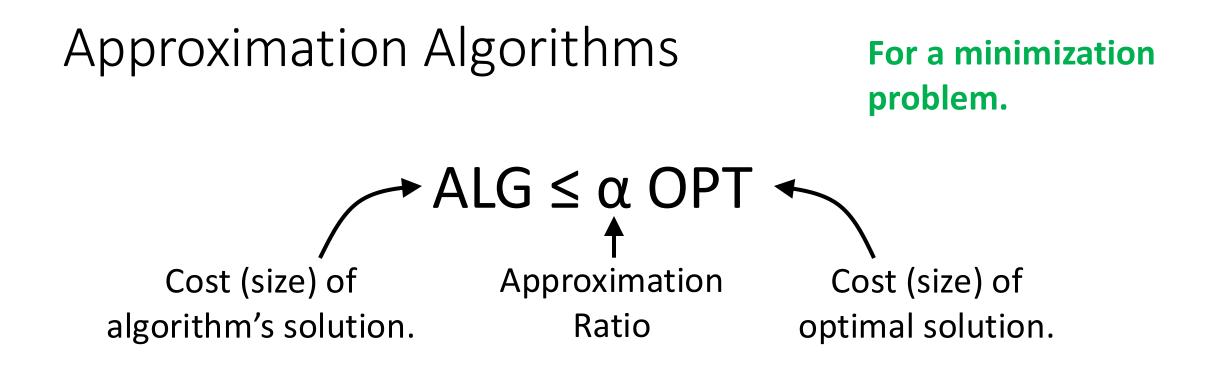


- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.



- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

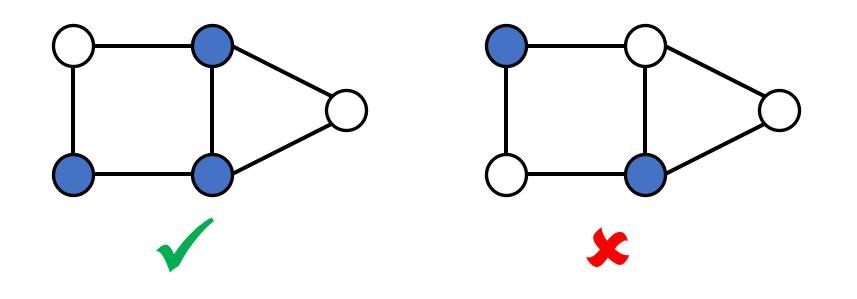
Then, I know that $746.125 \leq 1.12$ OPT



- Suppose I know my algorithm is a 1.12-approximation algorithm.
- Suppose my algorithm returns a solution of cost (size) 746.125.

Then, I know that 746.125 \leq 1.12 OPT $\Rightarrow \frac{746.125}{1.12} = 666.183 \leq \text{OPT} \leq 746.125$

Vertex Cover



Vertex Cover

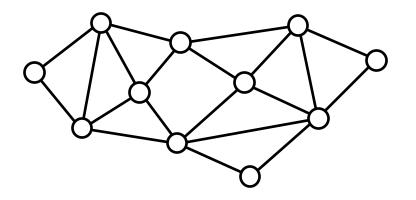
Algorithm:

Vertex Cover

Algorithm:

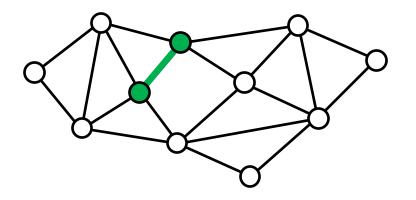
Vertex Cover

Algorithm:



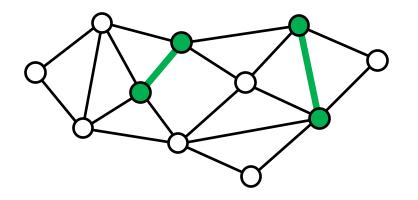
Vertex Cover

Algorithm:



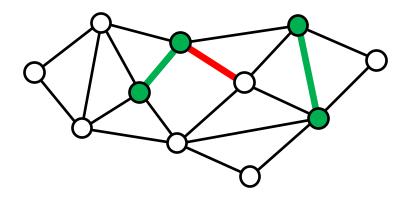
Vertex Cover

Algorithm:



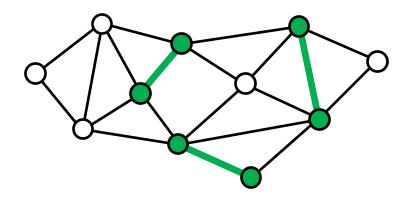
Vertex Cover

Algorithm:



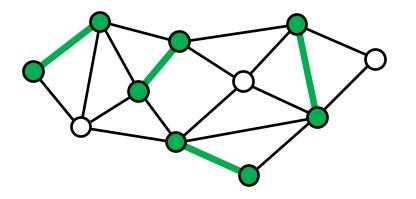
Vertex Cover

Algorithm:



Vertex Cover

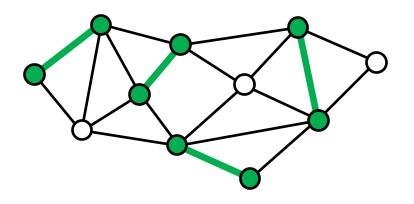
Algorithm:



Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

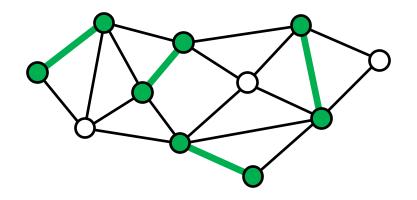
Consider a set of edges, $E' \subset E$, that do not share vertices.



Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

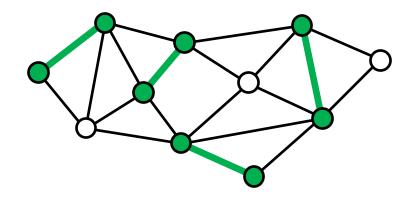


Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq OPT$ Size of actual smallest vertex cover.

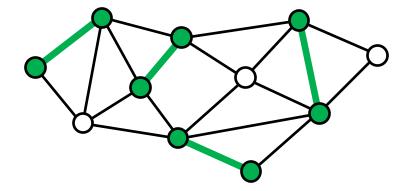


Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq OPT$ Size of actual smallest vertex cover.

If we selected fewer than one vertex per edge, we would not have a vertex cover, because that edge would not be covered!



Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq \mathsf{OPT}$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq OPT$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$ALG = 2 |E'|$$

Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq \mathsf{OPT}$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

$$ALG = 2 |E'|$$

 \Rightarrow ALG = 2 |E'|

Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq \mathsf{OPT}$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

ALG = 2 |E'|

 \Rightarrow ALG = 2 $|E'| \le 2$ OPT

Vertex Cover

Consider a set of edges, $E' \subset E$, that do not share vertices. Is there a relationship between the minimum vertex cover and |E'|?

 $|E'| \leq \mathsf{OPT}$

Does the size of the algorithm's output relate to a set of edges that do not share vertices?

ALG = 2 |E'|

 \Rightarrow ALG = 2 $|E'| \le 2$ OPT \Rightarrow ALG ≤ 2 OPT

Vertex Cover

Consider the set of order E' = E that do not share vertices to there a relation we cannot find optimal vertex covers in poly time unless P = NP, but this Does to algorithm is at worst 2-times optimal. do not share vertices?

$$ALG = 2 |E'|$$

 \Rightarrow ALG = 2 $|E'| \le 2$ OPT \Rightarrow ALG ≤ 2 OPT

Vertex Cover

Is this the best this algorithm can do?

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT?

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Vertex Cover

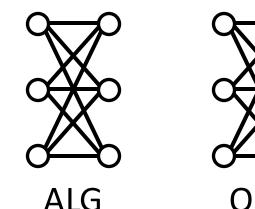
while uncovered edge exists select both vertices from uncovered edge \Rightarrow ALG \leq 2 OPT Is this the best this algorithm can do? I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT? of arbitrary size

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Complete Bipartite Graph



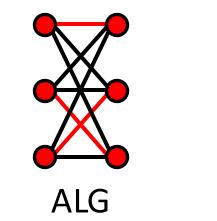
ALG<mark>?</mark> OPT<mark>?</mark>

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Complete Bipartite Graph



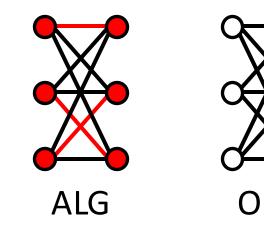
|ALG| = n: If v is not selected, all neighbors are $\Rightarrow \frac{n}{2}$ edges are selected \Rightarrow all n vertices are selected.

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Complete Bipartite Graph



|ALG| = n: If v is not selected, all neighbors are $\Rightarrow \frac{n}{2}$ edges are selected \Rightarrow all n vertices are selected.

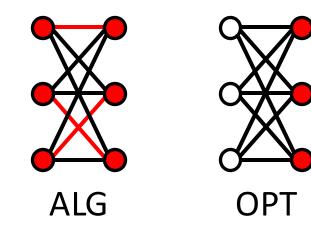
 $|OPT| = \frac{n}{2}$: Fewer than $\frac{n}{2}$ nodes selected \Rightarrow \exists unselected edge.

Vertex Cover

Is this the best this algorithm can do?

I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

Complete Bipartite Graph



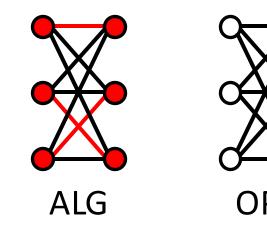
∴ The best Vertex Cover can be approximated is within a factor of 2

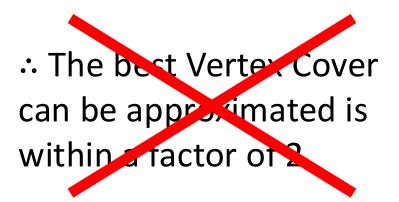
Vertex Cover

Is this the best this algorithm can do?

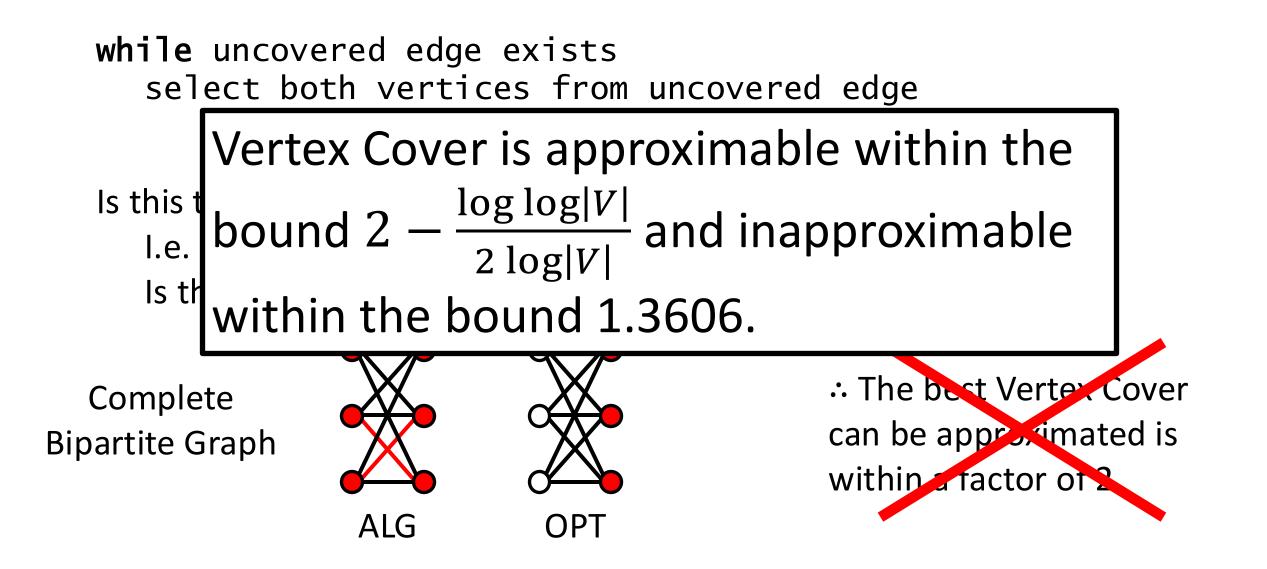
I.e. Can we guarantee this algorithm does better than 2 OPT? Is there a graph where this algorithm does exactly 2 OPT?

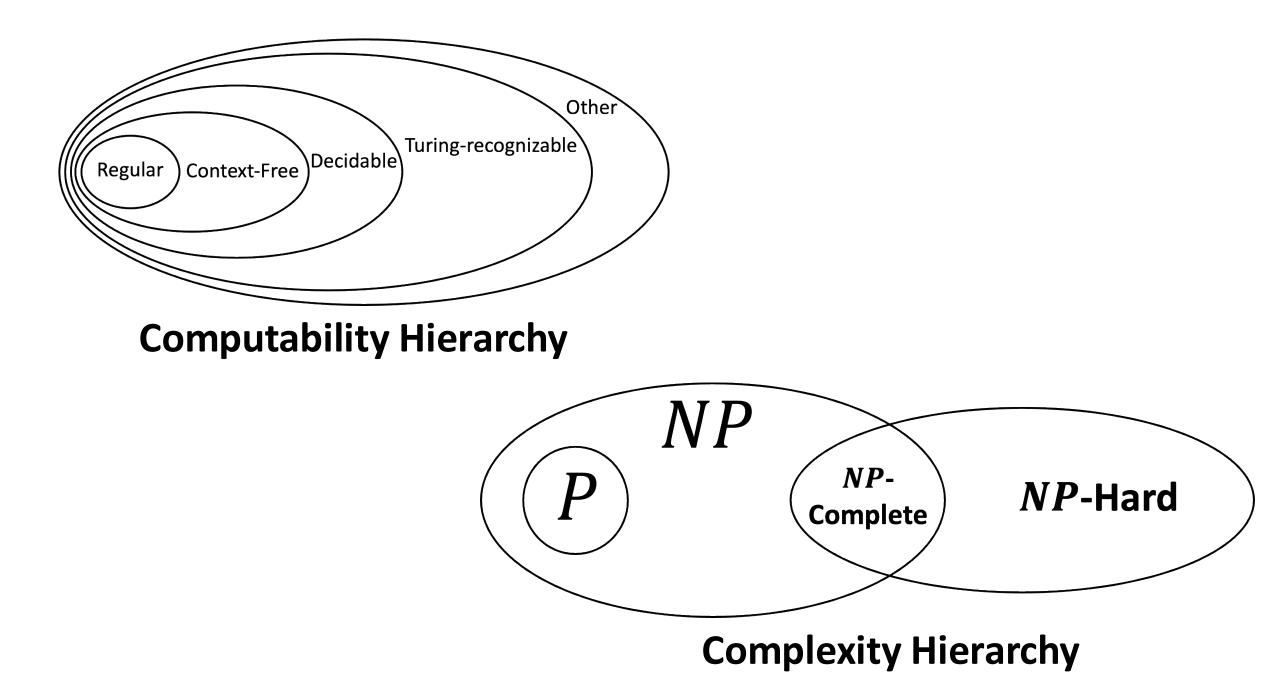
Complete Bipartite Graph



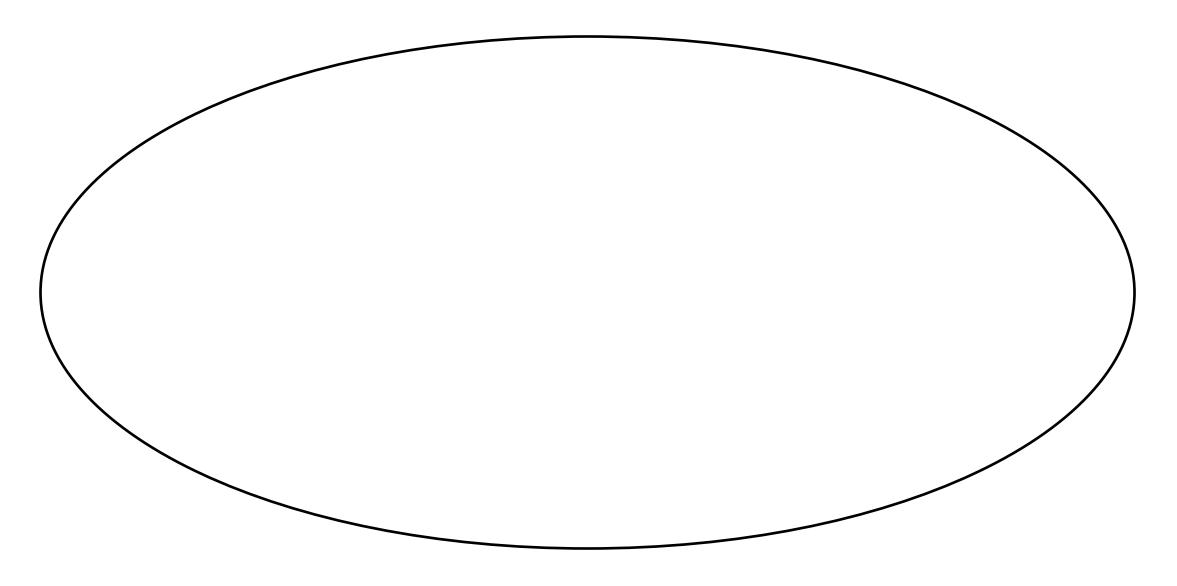


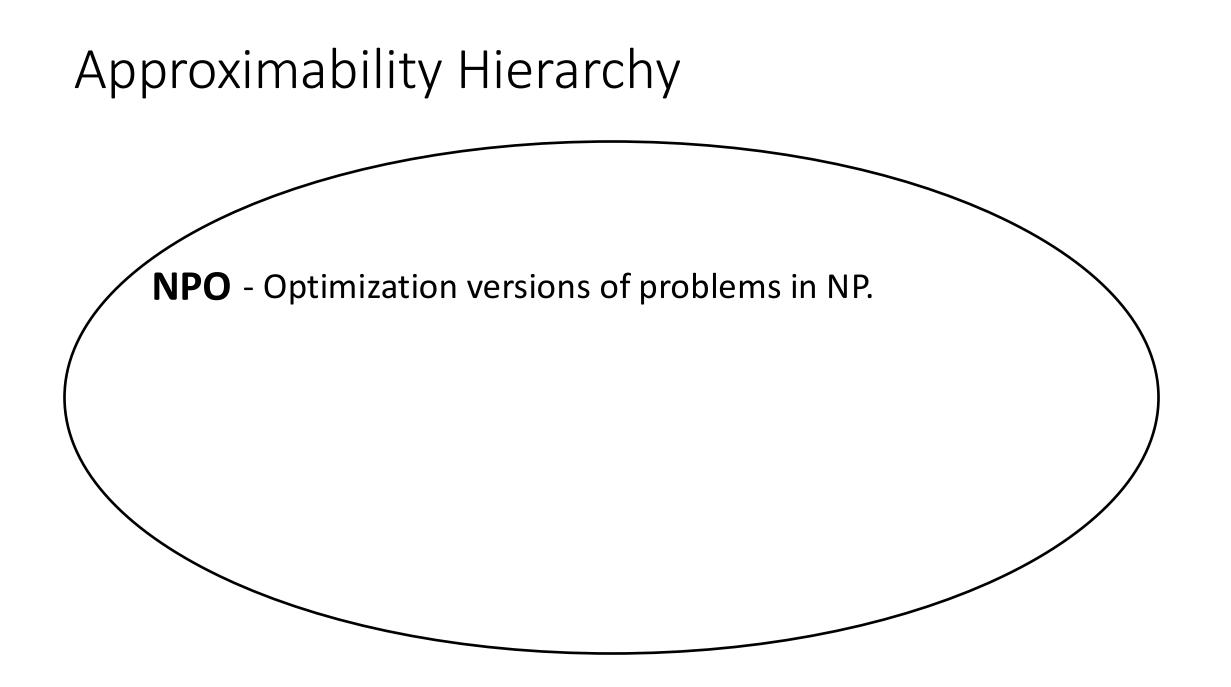
Vertex Cover



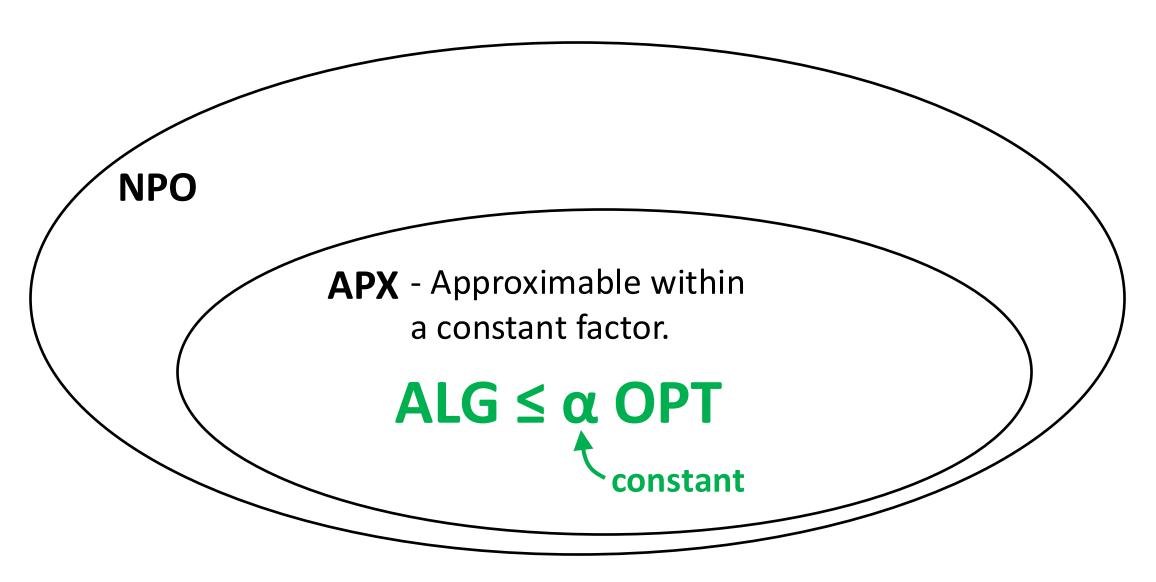


Approximability Hierarchy





Approximability Hierarchy



Approximability Hierarchy

