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polynomial time.
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Claim: SUBSET — SUM = {(S,t): S = {x4, ..., x,,},and there
exists some {y4, ..., ¥} € Ssuchthat },y; =t} € NP.

Example:
({4,11,16,21,27},25)
Is there a subset of {4,11, 16,21, 27} that sums to 25?

Yes, 4 + 21 = 25.
How do we verify SUBSET — SUM answers?
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NP Set of problems in NP whose algorithms
can solve any other problem in NP with

COT)’lpthe polynomial extra time.

Interesting Properties:
* A polynomial time algorithm for any NP — Complete problem gives a

polynomial time algorithm for every problem in NP (i.e., P = NP)...

e ...including all the other NP — Complete problems.

 The thing that makes one NP-C problem (possibly) unsolvable in
polynomial time is the exact same thing that makes every other NP-C
problem (possibly) unsolvable in polynomial time.



Handling NP-Completeness

cIo

Techniques to handle NP-Complete problems:
1. Brute Force (i.e. Exponential Time).
2. Heuristics.
3. Approximation Algorithms.
4. Fixed-parameter Tractable Algorithms.
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Approximation Algorithms For a minimization

problem.
/»ALG <a OPT ~
Cost (size) of Approximation Cost (size) of
algorithm’s solution. Ratio optimal solution.

Example:
* Suppose | know my algorithm is a 1.12-approximation algorithm.
e Suppose my algorithm returns a solution of cost (size) 746.125.

Then, | know that 746.125 < 1.12 OPT
725125 666.183 < OPT < 746.125
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while uncovered edge exists
select both vertices from uncovered edge
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|E'| < OPT\
Size of actual smallest vertex cover.

If we selected fewer than one vertex per
edge, we would not have a vertex cover,
because that edge would not be covered!
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select both vertices from uncovered edge

Consider a set of edges, E’ C E, that do not share vertices. Is there
a relationship between the minimum vertex cover and |E’|?

|E’] < OPT

Does the size of the algorithm’s output relate to a set of edges that
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Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

Consid pu—a—eaimaiad.aas : -
a relat| We cannot find optlmal vertex covers in

poly time unless P = NP, but this

Does tlalgorithm is at worst 2-times optimal.
do not Share vertices:

ALG =2 |E’|
— ALG =2 |E’| < 2 OPT = ALG < 2 OPT
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while uncovered edge exists
select both vertices from uncovered edge

— ALG < 2 OPT

Is this the best this algorithm can do?
l.e. Can we guarantee this algorithm does better than 2 OPT?
Is there a graph where this algorithm does exactly 2 OPT?
|

of arbitrary size
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while uncovered edge exists
select both vertices from uncovered edge
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Is this the best this algorithm can do?
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Is there a graph where this algorithm does exactly 2 OPT?

| ALG|=n: If v is not selected, all neighbors

Complete are = % edges are selected = all n vertices

Bipartite Graph are selected.

|OPT | = g: Fewer than g nodes selected =

ALG OPT

3 unselected edge.
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~. The best Vertex Cover
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within a factor of 2
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Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

— ALG < 2 OPT

Is this the best this algorithm can do?
l.e. Can we guarantee this algorithm does better than 2 OPT?
Is there a graph where this algorithm does exactly 2 OPT?

s The over
can be ap ated is

Complete
Bipartite Graph

ALG OPT



Vertex Cover

while uncovered edge exists
select both vertices from uncovered edge

Vertex Cover is approximable within the

log log|V
bound 2 g loglV]
2 log|V]

within the bound 1.3606.

Is this 1
l.e.
Is t

and inapproximable

\//
Complete .:Qg =~ The bagt Vertg#Cover
Bipartite Graph S can be appgpRmated is
O/A\ withingfTactor oTS

ALG OPT



Turing-recognizable

Context-Free |Pecidable

Computability Hierarchy

NP

NP-
@ Complete NP-Hard
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NPO - Optimization versions of problems in NP.




Approximability Hierarchy

NPO

APX - Approximable within
a constant factor.

ALG < O{OPT

constant




Approximability Hierarchy

NPO

APX

VC



	Slide 1: Approximation Algorithms CSCI 432
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: S U B S E T S U M 
	Slide 7: S U B S E T S U M 
	Slide 8: S U B S E T S U M 
	Slide 9: S U B S E T S U M 
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Handling NP-Completeness
	Slide 16: Approximation Algorithms
	Slide 17: Approximation Algorithms
	Slide 18: Approximation Algorithms
	Slide 19: Approximation Algorithms
	Slide 20: Approximation Algorithms
	Slide 21: Approximation Algorithms
	Slide 22: Approximation Algorithms
	Slide 23: Approximation Algorithms
	Slide 24: Approximation Algorithms
	Slide 25: Vertex Cover 
	Slide 26: Vertex Cover 
	Slide 27: Vertex Cover 
	Slide 28: Vertex Cover 
	Slide 29: Vertex Cover 
	Slide 30: Vertex Cover 
	Slide 31: Vertex Cover 
	Slide 32: Vertex Cover 
	Slide 33: Vertex Cover 
	Slide 34: Vertex Cover
	Slide 35: Vertex Cover
	Slide 36: Vertex Cover
	Slide 37: Vertex Cover
	Slide 38: Vertex Cover
	Slide 39: Vertex Cover
	Slide 40: Vertex Cover
	Slide 41: Vertex Cover
	Slide 42: Vertex Cover
	Slide 43: Vertex Cover
	Slide 44: Vertex Cover
	Slide 45: Vertex Cover
	Slide 46: Vertex Cover
	Slide 47: Vertex Cover
	Slide 48: Vertex Cover
	Slide 49: Vertex Cover
	Slide 50: Vertex Cover
	Slide 51: Vertex Cover
	Slide 52: Vertex Cover 
	Slide 53: Vertex Cover 
	Slide 54: Vertex Cover
	Slide 55
	Slide 56: Approximability Hierarchy
	Slide 57: Approximability Hierarchy
	Slide 58: Approximability Hierarchy
	Slide 59: Approximability Hierarchy

