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Approximation Algorithms

ALG ≤ α OPT

Cost (size) of 
algorithm’s solution.

Cost (size) of 
optimal solution.

Approximation 
Ratio

Minimization problem:

ALG ≥ 
1

α
 OPT

Maximization problem:



Vertex Cover 

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

✓ 



Vertex Cover

while uncovered edge exists
 select both vertices from uncovered edge

Consider a set of edges, 𝐸’ ⊂ 𝐸, that do not share vertices. Is there 
a relationship between the minimum vertex cover and |𝐸’|?

         |𝐸’| ≤ OPT

Does the size of the algorithm’s output relate to a set of edges that 
do not share vertices?
         ALG = 2 |𝐸’| 

    ⟹ ALG = 2 |𝐸’| ≤ 2 OPT ⟹ ALG ≤ 2 OPT



Vertex Cover ILP

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

Objective: min 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

Subject to: 𝑥1 + 𝑥2 ≥ 1
   𝑥2 + 𝑥3 ≥ 1
   𝑥2 + 𝑥4 ≥ 1
   𝑥3 + 𝑥4 ≥ 1
   𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 0,1

1

2

4

3
Example:

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

∈ NP-Complete
𝒙𝒊 ∈ 𝟎, 𝟏  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

𝒙𝒊 ∈ 𝟎, 𝟏  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

∈ NP-Complete

∈ P

𝒙𝒊 ∈ 𝟎, 𝟏  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

∈ NP-Complete

∈ P

LP Relaxation: Remove all integrality constraints to turn ILP into LP. 

𝒙𝒊 ∈ 𝟎, 𝟏  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝒙𝒊 ∈ 𝟎, 𝟏  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Vertex 
Selection?



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

If 𝑥𝑖 = 1, what should we do with vertex 𝑖? 

Vertex 
Selection?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

If 𝑥𝑖 = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥𝑖 = 0, what should we do with vertex 𝑖? 

Vertex 
Selection?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

If 𝑥𝑖 = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥𝑖 = 0, what should we do with vertex 𝑖? Don’t add to subset 𝑆

Vertex 
Selection?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.

If 𝑥𝑖 = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥𝑖 = 0, what should we do with vertex 𝑖? Don’t add to subset 𝑆

If 𝑥𝑖 =
126

337
, what should we do with vertex 𝑖?

Vertex 
Selection?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Is 𝑆 a vertex cover? 
 

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Is 𝑆 a vertex cover? 
 Yes. For every edge, 𝑥𝑖 + 𝑥𝑗 ≥ 1. 

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Is 𝑆 a vertex cover? 
 Yes. For every edge, 𝑥𝑖 + 𝑥𝑗 ≥ 1. Thus, at least one of 𝑥𝑖 or 

𝑥𝑗  ≥
1

2
. 

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Is 𝑆 a vertex cover? 
 Yes. For every edge, 𝑥𝑖 + 𝑥𝑗 ≥ 1. Thus, at least one of 𝑥𝑖 or 

𝑥𝑗  ≥
1

2
. So for every edge, at least one of its vertices will be in 𝑆.

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
What is the relationship between ALG = |𝑆| and OPT?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

 Claim: σ 𝑥LP ≤ OPT.

 

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

 Claim: σ 𝑥LP ≤ OPT.

 Proof: OPT = ?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

 Claim: σ 𝑥LP ≤ OPT.

 Proof: OPT = σ 𝑥ILP, where 𝑥𝑖 ∈ 0,1 ...?

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

 Claim: σ 𝑥LP ≤ OPT.

 Proof: OPT = σ 𝑥ILP, where 𝑥𝑖 ∈ 0,1 . When 𝑥𝑖 is relaxed so 
that 𝑥𝑖 ∈ [0,1], this gives more possibilities to further 
decrease σ𝑖 𝑥𝑖. Thus, σ 𝑥LP ≤ OPT.

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Can we bound OPT from below?

 Let 𝑥ILP and 𝑥LP be the set of 𝑥 values found by the ILP and LP

 Claim: σ 𝑥LP ≤ OPT.

 Proof: OPT = σ 𝑥ILP, where 𝑥𝑖 ∈ 0,1 . When 𝑥𝑖 is relaxed so 
that 𝑥𝑖 ∈ [0,1], this gives more possibilities to further 
decrease σ𝑖 𝑥𝑖. Thus, σ 𝑥LP ≤ OPT.

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Law of LP Relaxations: 
 OPTLP ≤ OPTILP *
 (minimization problem)

*Objective values, 
not individual 
variable values.



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because...?

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

             ≥ σ
𝑥𝑖∈𝑥LP: 𝑥𝑖≥

1

2

1

2
, because...?

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

             ≥ σ
𝑥𝑖∈𝑥LP: 𝑥𝑖≥

1

2

1

2
, because each 𝑥𝑖 is at least 

1

2

   

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

             ≥ σ
𝑥𝑖∈𝑥LP: 𝑥𝑖≥

1

2

1

2
, because each 𝑥𝑖 is at least 

1

2

             =
1

2
𝑥𝑖 ∈ 𝑥LP:  𝑥𝑖 ≥

1

2

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

             ≥ σ
𝑥𝑖∈𝑥LP: 𝑥𝑖≥

1

2

1

2
, because each 𝑥𝑖 is at least 

1

2

             =
1

2
𝑥𝑖 ∈ 𝑥LP:  𝑥𝑖 ≥

1

2
= ?

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

How does σ 𝑥LP relate to ALG?

 σ 𝑥LP = σ𝑥𝑖∈𝑥LP
𝑥𝑖 ≥ σ

𝑥𝑖∈𝑥LP: 𝑥𝑖≥
1

2

𝑥𝑖, because it’s a subset of 𝑥LP

             ≥ σ
𝑥𝑖∈𝑥LP: 𝑥𝑖≥

1

2

1

2
, because each 𝑥𝑖 is at least 

1

2

             =
1

2
𝑥𝑖 ∈ 𝑥LP:  𝑥𝑖 ≥

1

2
=

1

2
 ALG

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

What is the relationship between ALG and OPT?

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

What is the relationship between ALG and OPT?

 σ 𝑥LP ≥
1

2
 ALG and σ 𝑥LP ≤ OPT

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Vertex Cover ILP

What is the relationship between ALG and OPT?

 σ 𝑥LP ≥
1

2
 ALG and σ 𝑥LP ≤ OPT

 ALG ≤ 2 OPT

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

1 1 1 1

1 2 3 4

Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

1 1 1 1

1 2 3 4

Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

1 1 1 1 Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1

1 2 3 4



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.25 1 1 1 Object Weight

1 0.75

2 0.4

3 0.3

4 0.4
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0.25 1 1 1 Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1

1

1 2 3 4



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.
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Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
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Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.
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0.25 0.3 1 1 Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1

1 2
3

1 2 3 4



Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem

Problem: Deliver 𝑛 objects using the smallest number of trucks. Each object 
weighs between 0 and 1 ton. Each truck has a capacity of 1 ton.

Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.

Could we ever have a used truck that is less than half filled?
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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 No! They would have been consolidated onto one truck.
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Let 𝑊 = total weight of all 𝑛 objects.



Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.

Could we ever have multiple used trucks that are less than half filled?
 No! They would have been consolidated onto one truck.
Let 𝑊 = total weight of all 𝑛 objects.

   How does 𝑊 relate to 𝐴𝐿𝐺?



Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.

Could we ever have multiple used trucks that are less than half filled?
 No! They would have been consolidated onto one truck.
Let 𝑊 = total weight of all 𝑛 objects.

  ⇒ 𝑊 >
1

2
𝐴𝐿𝐺 − 1



Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.

Could we ever have multiple used trucks that are less than half filled?
 No! They would have been consolidated onto one truck.
Let 𝑊 = total weight of all 𝑛 objects.

  ⇒ 𝑊 >
1

2
𝐴𝐿𝐺 − 1 ⇒ 𝐴𝐿𝐺 < 2𝑊 + 1 
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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What is the smallest number of trucks possibly needed for a weight of 𝑊?
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Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Goal: Show this algorithm is  2-approximation algorithm.

   𝐴𝐿𝐺 < 2𝑊 + 1 
What is the smallest number of trucks possibly needed for a weight of 𝑊?
   𝑊 ⇒ 𝑂𝑃𝑇 ≥ 𝑊

  



Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.
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Truck Loading Problem
Algorithm: Line up trucks. For each object, place it on the first truck it fits on.

0.15 0.3 0.6 1 Object Weight

1 0.75

2 0.4

3 0.3

4 0.4

5 0.1

1
5
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Goal: Show this algorithm is  2-approximation algorithm.

   𝐴𝐿𝐺 < 2𝑊 + 1 
What is the smallest number of trucks possibly needed for a weight of 𝑊?
   𝑊 ⇒ 𝑂𝑃𝑇 ≥ 𝑊

  𝐴𝐿𝐺 < 2 𝑂𝑃𝑇 + 1 ⇒ 𝐴𝐿𝐺 ≤ 2 𝑂𝑃𝑇 

𝐴𝐿𝐺 is an integer less than the 
integer 2 𝑂𝑃𝑇 +  1, so the most 
it could be is the integer 2 𝑂𝑃𝑇.
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