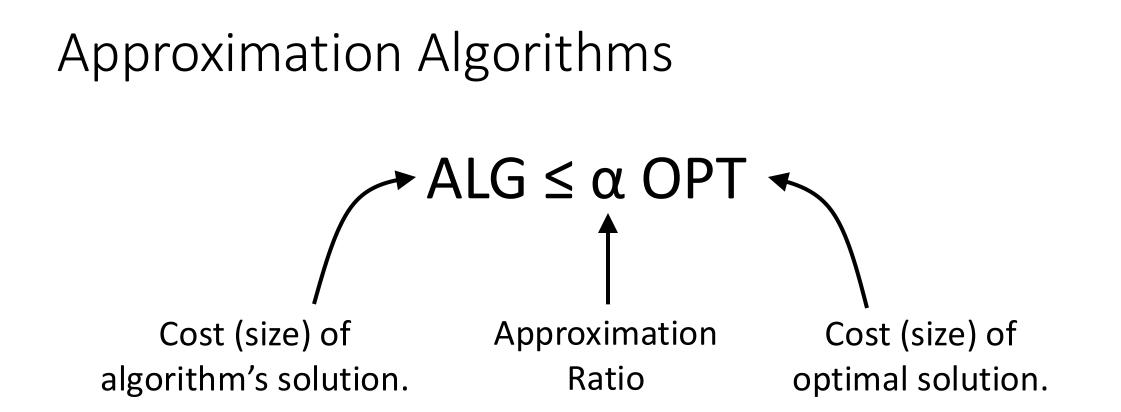
Set Cover CSCI 532



Example:

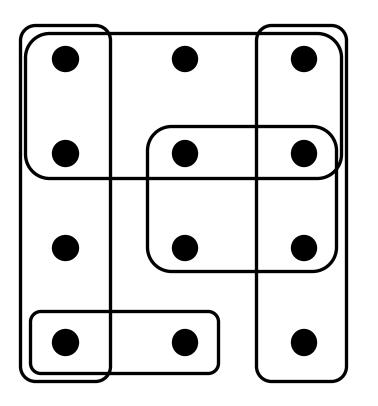
Example:

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$$

Example:

 $U = \{1, 4, 7, 8, 10\}$ $S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$ $\{\{1, 7, 8\}, \{4, 8, 10\}\}$ $\{\{1, 4, 7\}, \{7, 8\}\}$

Example:



Algorithm:

Greedy Algorithm:

while element of universe not included
select S_i with largest number of excluded elements.

Suppose the universe contains n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains *n* elements.

$ALG \leq \alpha \; OPT$

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

$ALG \leq \alpha \; OPT$

Game Plan:

Bound the maximum number of sets in ALG by...

Bounding the maximum number of iterations of the algorithm by...

Bounding the size of each set added by the algorithm.

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains *n* elements.

What can we say about the first set selected?

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

What can we say about the first set selected? It's the biggest!

> At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

? \leq |Biggest Set| \leq ?

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

? \leq |Biggest Set| \leq ? Which do I care about?

OPT = # sets in an optimal solution to cover all n elements.

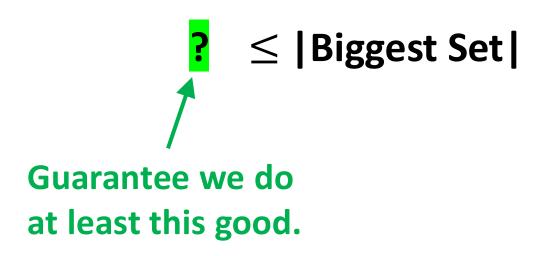
Suppose the universe contains n elements.

What can we say about the first set selected?

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?



OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

What if each set had fewer than $\frac{n}{OPT}$ elements in it?

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

What if each set had fewer than $\frac{n}{OPT}$ elements in it?

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

What if each set had fewer than $\frac{n}{OPT}$ elements in it?

$$\begin{array}{l} \text{# covered} \\ \text{elements} \end{array} \leq \begin{array}{c} \text{Size of} \\ \text{sets} \end{array} \times \begin{array}{c} \text{\# of} \\ \text{sets} \end{array}$$

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

What if each set had fewer than $\frac{n}{OPT}$ elements in it?

$$\begin{array}{l} \text{# covered} \\ \text{elements} \end{array} \le \begin{array}{l} \text{Size of} \\ \text{sets} \end{array} \times \begin{array}{l} \text{\# of} \\ \text{sets} \end{array} < \frac{n}{OPT} OPT = n. \end{array}$$

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

What can we say about the first set selected?

It's the biggest!

$$\frac{n}{OPT} \leq |\text{Biggest Set}|$$

What if each set had fewer than $\frac{n}{OPT}$ elements in it?

$$\begin{array}{ll} \texttt{# covered} \\ \texttt{sets} \end{array} &\leq \begin{array}{l} \texttt{Size of} \\ \texttt{sets} \end{array} \times \begin{array}{l} \texttt{\# of} \\ \texttt{sets} \end{array} &< \begin{array}{l} \frac{n}{OPT} OPT \end{array} &= n. \end{array} \end{array} \qquad \begin{array}{l} \texttt{Not a valid} \\ \texttt{solution!} \end{array}$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all n elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

?

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

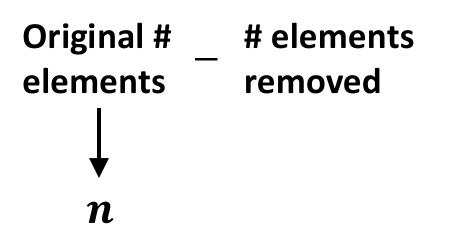
?

Original # _ # elements elements removed

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

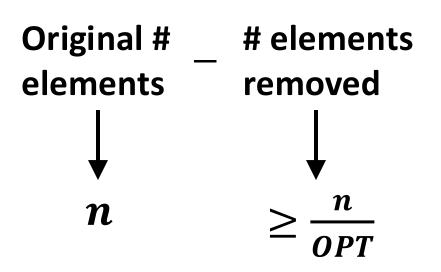
?



OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

?



ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

> $n_1 \leq n - \frac{n}{OPT}$ The first set could be $> \frac{n}{OPT}$, which would leave fewer elements remaining. # elements **Original #** elements removed n

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

It covers the most uncovered elements.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Suppose the first set was <u>not</u> in the optimal solution.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements.

Suppose the first set was <u>not</u> in the optimal solution.

If not, how do the remaining OPT - 1 optimal sets cover the remaining n_1 elements?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements. $\Rightarrow \frac{n_1}{OPT-1} \leq |\text{Second Set}|$

Suppose the first set was <u>not</u> in the optimal solution.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements. $\Rightarrow \frac{n_1}{OPT-1} \leq |\text{Second Set}|$

Suppose the first set was <u>not</u> in the optimal solution.

Then, the n_1 elements must still be covered by OPT.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements.

$$\Rightarrow \frac{n_1}{OPT-1} \le |\text{Second Set}|$$

Suppose the first set was <u>not</u> in the optimal solution.

Then, the n_1 elements must still be covered by OPT.

$$\Rightarrow \frac{n_1}{OPT} \le |\text{Second Set}|$$

If not, how do the OPToptimal sets cover the remaining n_1 elements?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

What can we say about the second set selected?

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements. $\Rightarrow \frac{n_1}{OPT} < \frac{n_1}{OPT-1} \le |\text{Second Set}|$

Suppose the first set was <u>not</u> in the optimal solution.

Then, the n_1 elements must still be covered by OPT.

$$\Rightarrow \frac{n_1}{OPT} \le |\text{Second Set}|$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

Suppose the first set was in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{OPT-1}$ uncovered elements. $\Rightarrow \frac{n_1}{OPT} < \frac{n_1}{OPT-1} \le |\text{Second Set}|$

Suppose the first set was <u>not</u> in the optimal solution.

Then, the n_1 elements must still be covered by OPT.

$$\Rightarrow \frac{n_1}{OPT} \le |\text{Second Set}|$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{OPT}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

$$n_2 \le n_1 - \frac{n_1}{OPT}$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

$$n_2 \le n_1 - \frac{n_1}{OPT} = n_1 \left(1 - \frac{1}{OPT} \right)$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

$$n_2 \le n_1 - \frac{n_1}{OPT} = n_1 \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^2$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

The first set selected will have $\geq \frac{n}{OPT}$ elements.

Then, the number of elements remaining after the first iteration is:

$$n_1 \le n - \frac{n}{OPT} = n \left(1 - \frac{1}{OPT} \right)$$

Some remaining set has at least $\frac{n_1}{OPT}$ uncovered elements.

Then, the number of elements remaining after the second iteration is:

$$n_2 \le n_1 - \frac{n_1}{OPT} = n_1 \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^2$$

In general, after t iterations:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le \dots \le n \left(1 - \frac{1}{OPT} \right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1 ALG = ?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1 ALG = # iterations

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1 ALG = # iterations

When does the algorithm terminate?

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1 ALG = # iterations

When does the algorithm terminate? When $n_t < 1$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

Big picture:

How many sets are added each iteration? 1 ALG = # iterations

When does the algorithm terminate? When $n_t < 1$

What value of t makes $n_t < 1$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

Trust that $1 - x < e^{-x}$ for all $x \neq 0$.

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

What value of t makes $n_t < 1$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

Trust that $1 - x < e^{-x}$ for all $x \neq 0$.

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

If $t = OPT \ln n$, $n_t < ne^{-\frac{OPT \ln n}{OPT}} = 1$

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

Trust that $1 - x < e^{-x}$ for all $x \neq 0$.

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

If $t = OPT \ln n$, $n_t < ne^{-\frac{OPT \ln n}{OPT}} = 1$, which means that no elements remain.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

Trust that $1 - x < e^{-x}$ for all $x \neq 0$.

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

If $t = OPT \ln n$, $n_t < ne^{-\frac{OPT \ln n}{OPT}} = 1$, which means that no elements remain. So, the universe is covered after at most $t = OPT \ln n$ iterations.

ALG = # sets selected by the algorithm to cover all n elements.

OPT = # sets in an optimal solution to cover all *n* elements.

Suppose the universe contains *n* elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n \left(1 - \frac{1}{OPT} \right)$$

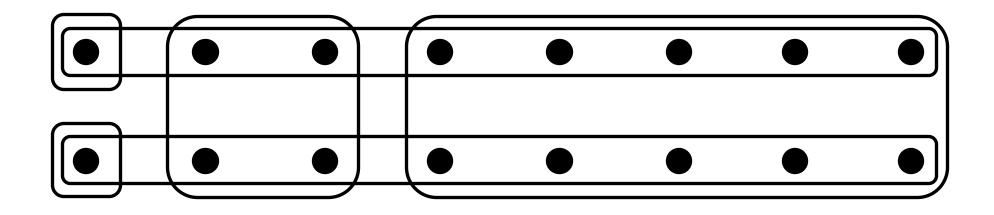
Trust that $1 - x < e^{-x}$ for all $x \neq 0$.

$$n_t \le n \left(1 - \frac{1}{OPT} \right)^t < n \left(e^{-\frac{1}{OPT}} \right)^t = n e^{-\frac{t}{OPT}}$$

If $t = OPT \ln n$, $n_t < ne^{-\frac{OPT \ln n}{OPT}} = 1$, which means that no elements remain. So, the universe is covered after at most $t = OPT \ln n$ iterations. $\implies ALG < \ln n OPT$

Find an instance of 16 elements where the optimal solution is 2, but the algorithm will find a solution of 4.

Find an instance of 16 elements where the optimal solution is 2, but the algorithm will find a solution of 4.



It turns out that Set Cover cannot be approximated within the bound of $(1 - o(1)) \ln n$, unless P = NP.

Approximability Hierarchy

