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Travelling Salesman Problem

TSP: Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city once and 
returns to the origin city?
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Hamiltonian Cycle Problem

Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex 
exactly once.

Example:
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TSP ∈ NP-Complete
Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex 
exactly once.

TSP: Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city once and 
returns to the origin city?
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TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC 

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC
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TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC 

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
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Translation: cost(𝑒) = 1 if 𝑒 ∈ HC 
cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

TSP Approximation Algorithm

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.
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If G has a Hamiltonian Cycle,
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If G does not have a Hamiltonian Cycle,

ALG𝐴 > 𝛼 |𝑉|
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Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
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TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
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Yes! Any approximation algorithm for TSP will solve 
the NP-Complete Hamiltonian Cycle problem!



TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?
Yes! Any approximation algorithm for TSP will solve 
the NP-Complete Hamiltonian Cycle problem!

∴ ?



TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?
Yes! Any approximation algorithm for TSP will solve 
the NP-Complete Hamiltonian Cycle problem!

∴ ∄ poly time approx alg for TSP, unless P = NP 
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Special Case - Metric TSP

TSP: Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city once and 
returns to the origin city?



Special Case - Metric TSP

TSP: Given a list of cities and the distances between each pair of cities 
(satisfying the triangle inequality), what is the shortest possible route 
that visits each city once and returns to the origin city?

dist(𝑢, 𝑣) ≤ dist 𝑢,𝑤 + dist(𝑤, 𝑣)



Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.
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Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?
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Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?
Spanning Tree

Special Case - Metric TSP
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How to turn MST into tour of cities?
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Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

Special Case - Metric TSP



Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

Any problems?

Special Case - Metric TSP



Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

How can we eliminate double visits (without 
messing up the cost)?
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Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

How can we eliminate double visits (without 
messing up the cost)?

Skip to next unvisited vertex. Can only 
decrease cost (triangle inequality).
dist(𝑢, 𝑣) ≤ dist 𝑢,𝑤 + dist(𝑤, 𝑣)

Special Case - Metric TSP
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TSP ILP

Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city once and 
returns to the origin city?

If we can build an ILP for TSP, then approximating 
general ILPs would approximate TSP, which 
would optimally solve Hamiltonian Cycle…



TSP ILP

Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city once and 
returns to the origin city?

If we can build an ILP for TSP, then approximating 
general ILPs would approximate TSP, which 
would optimally solve Hamiltonian Cycle…

So, if we can build an ILP for TSP, solving general 
ILPs is also inapproximable.



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗
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𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
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𝑐"#𝑥"#Objective:
Every city needs an outgoing 
edge in the route.



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
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Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

Every city needs an outgoing 
edge in the route.



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
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Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

Every city needs an incoming 
edge in the route.



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗
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Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

Somehow we need to make 
sure all these deployed edges 
actually form a cycle.
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𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1

Objective:

Subject to:

Doesn’t matter where we start. 
Every city is on the route.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1
𝑢" + 1 − 𝑛 + 𝑛𝑥"# ≤ 𝑢#

Objective:

Subject to:

2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

Forces the order of cities to 
increase by 1, except when it 
returns to city 1.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛



TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1
𝑢" + 1 − 𝑛 + 𝑛𝑥"# ≤ 𝑢#

Objective:

Subject to:

2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

Forces the order of cities to 
increase by 1, except when it 
returns to city 1.

Violated by any 
cycle that does not 
return to city 1.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛



APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP    

Log-APX

Poly-APX

Clique
ILP


