
Travelling Salesman Problem
CSCI 432

Travelling Salesman Problem

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

Example:

5

9437

2

Travelling Salesman Problem

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

Example:

5

9437

2

5

9437

2

5

9437

2

5

9437

2

ü û û

Hamiltonian Cycle Problem

Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

Example:
∈ NP-Complete

Hamiltonian Cycle Problem

Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

Example:

ü û û

∈ NP-Complete

TSP ∈ NP-Complete
Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

TSP ∈ NP-Complete
Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

TSP ∈ NP-Complete
Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

HC
Instance

TSP
Instance

TSP
Algorithm

TSP
Solution

HC
Solution

Translate Translate

Hamiltonian Cycle Algorithm

Same selected edges

Same 𝑉
cost(𝑒) = 1 if 𝑒 ∈ HC Instance
cost(𝑒) = ∞ if 𝑒 ∉ HC Instance

TSP ∈ NP-Complete
Hamiltonian Cycle: Given a graph, find a cycle that visits each vertex
exactly once.

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

HC
Instance

TSP
Instance

TSP
Algorithm

TSP
Solution

HC
Solution

Translate Translate

Hamiltonian Cycle Algorithm

Same 𝑉
cost(𝑒) = 1 if 𝑒 ∈ HC Instance
cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC Instance

Same selected edges

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= ?

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP= ?

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

1 + 𝛽

Translation: cost(𝑒) = 1 if 𝑒 ∈ HC
cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

TSP Approximation Algorithm

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ ?

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ ?

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ OPT

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ OPT ≥ 𝑉 + 𝛽

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ OPT ≥ 𝑉 + 𝛽 = 𝑉 + 𝛼 𝑉

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ OPT ≥ 𝑉 + 𝛽 = 𝑉 + 𝛼 𝑉 = 1 + 𝛼 𝑉

TSP Approximation Algorithm
Translation: cost(𝑒) = 1 if 𝑒 ∈ HC

cost(𝑒) = 1 + 𝛽, 𝛽 > 1 if 𝑒 ∉ HC

If 𝐺 = (𝑉, 𝐸) has a Hamiltonian Cycle, OPTTSP= |𝑉|
If 𝐺 = (𝑉, 𝐸) does not have a Hamiltonian Cycle, OPTTSP≥ 𝑉 + 𝛽

Let 𝐴 be an 𝛼-approximation algorithm for TSP (i.e. ALG ≤ 𝛼 OPT)
Let 𝐺 = (𝑉, 𝐸) be input to Hamiltonian Cycle.
Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP.

What happens when 𝐴 runs on 𝐺′, 𝛽...
If 𝐺 has a Hamiltonian Cycle?

ALG𝐴 ≤ 𝛼 OPT = 𝛼 |𝑉|
If 𝐺 does not have a Hamiltonian Cycle?

ALG𝐴 ≥ OPT ≥ 𝑉 + 𝛽 = 𝑉 + 𝛼 𝑉 = 1 + 𝛼 𝑉 > 𝛼 |𝑉|

TSP Approximation Algorithm

Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP and run 𝐴:
If G has a Hamiltonian Cycle,

ALG𝐴 ≤ 𝛼 |𝑉|
If G does not have a Hamiltonian Cycle,

ALG𝐴 > 𝛼 |𝑉|

TSP Approximation Algorithm

Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP and run 𝐴:
If G has a Hamiltonian Cycle,

ALG𝐴 ≤ 𝛼 |𝑉|
If G does not have a Hamiltonian Cycle,

ALG𝐴 > 𝛼 |𝑉|

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽

TSP Approximation Algorithm

Let 𝐺′, 𝛽 = 𝛼 |𝑉| be input to TSP and run 𝐴:
If G has a Hamiltonian Cycle,

ALG𝐴 ≤ 𝛼 |𝑉|
If G does not have a Hamiltonian Cycle,

ALG𝐴 > 𝛼 |𝑉|

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?

TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?
Yes! Any approximation algorithm for TSP will solve
the NP-Complete Hamiltonian Cycle problem!

TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?
Yes! Any approximation algorithm for TSP will solve
the NP-Complete Hamiltonian Cycle problem!

∴ ?

TSP Approximation Algorithm

HamiltonianCycleExists(𝐺)
Let 𝐴 be a TSP 𝛼-approximation algorithm
Let 𝛽 = 𝛼 |𝑉| and run 𝐴 on 𝐺′, 𝛽
if ALG𝐴 ≤ 𝛼 |𝑉|

return true
else

return false

Is this a problem?
Yes! Any approximation algorithm for TSP will solve
the NP-Complete Hamiltonian Cycle problem!

∴ ∄ poly time approx alg for TSP, unless P = NP

APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP

APX

VC

NPO

Approximability Hierarchy

Set Cover

Log-APX

TSP

APX

VC

NPO

Approximability Hierarchy

Set Cover

Log-APX

Poly-APX

Clique
TSP

APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP

Log-APX

Poly-APX

Clique

APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP

Log-APX

Poly-APX

Clique

Special Case - Metric TSP

TSP: Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

Special Case - Metric TSP

TSP: Given a list of cities and the distances between each pair of cities
(satisfying the triangle inequality), what is the shortest possible route
that visits each city once and returns to the origin city?

dist(𝑢, 𝑣) ≤ dist 𝑢,𝑤 + dist(𝑤, 𝑣)

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

Special Case - Metric TSP

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?

Special Case - Metric TSP

Find some structure that is:
1. Easy to compute.
2. Related to TSP.
3. Lower bound on OPT.

What is this?
Spanning Tree

Special Case - Metric TSP

Relationship between OPT and cost of MST?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

Any problems?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

How can we eliminate double visits (without
messing up the cost)?

Special Case - Metric TSP

Relationship between OPT and cost of MST?
OPT ≥ cost(MST)

How to turn MST into tour of cities?
What is the cost of this tour?

ALG = 2 cost(MST)

Relationship between ALG and OPT?
ALG = 2 cost(MST) ≤ 2 OPT

How can we eliminate double visits (without
messing up the cost)?

Skip to next unvisited vertex. Can only
decrease cost (triangle inequality).
dist(𝑢, 𝑣) ≤ dist 𝑢,𝑤 + dist(𝑤, 𝑣)

Special Case - Metric TSP

APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP

Log-APX

Poly-APX

Clique
ILP

Metric TSP

TSP ILP

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

If we can build an ILP for TSP, then approximating
general ILPs would approximate TSP, which
would optimally solve Hamiltonian Cycle…

TSP ILP

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city once and
returns to the origin city?

If we can build an ILP for TSP, then approximating
general ILPs would approximate TSP, which
would optimally solve Hamiltonian Cycle…

So, if we can build an ILP for TSP, solving general
ILPs is also inapproximable.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#Objective:

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#Objective:
Every city needs an outgoing
edge in the route.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

Every city needs an outgoing
edge in the route.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

Every city needs an incoming
edge in the route.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

Somehow we need to make
sure all these deployed edges
actually form a cycle.

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

Objective:

Subject to: ∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1

Objective:

Subject to:

Doesn’t matter where we start.
Every city is on the route.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1
𝑢" + 1 − 𝑛 + 𝑛𝑥"# ≤ 𝑢#

Objective:

Subject to:

2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

Forces the order of cities to
increase by 1, except when it
returns to city 1.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

TSP ILP Suppose: Vertices 𝑖 = 1,… , 𝑛
𝑐"# = Weight of edge 𝑖, 𝑗

𝑥"# ∈ 0,1 = Indicates if route goes from city 𝑖 to city 𝑗.
𝑢" ∈ 1,… , 𝑛 = Indicates the order in which the cities are visited.

min/
"$%

&

/
#$%,#("

&

𝑐"#𝑥"#

/
#$%,#("

&

𝑥"# = 1

/
"$%,#("

&

𝑥"# = 1

𝑢% = 1
𝑢" + 1 − 𝑛 + 𝑛𝑥"# ≤ 𝑢#

Objective:

Subject to:

2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

Forces the order of cities to
increase by 1, except when it
returns to city 1.

Violated by any
cycle that does not
return to city 1.

∀𝑖 = 1,… , 𝑛

∀𝑗 = 1,… , 𝑛

APX

VC

NPO

Approximability Hierarchy

Set Cover

TSP

Log-APX

Poly-APX

Clique
ILP

