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Graph Coloring

Family of graph problems that involve coloring vertices (or edges)
subject to various constraints.
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Max 3-Coloring

Algorithm: For each vertex, randomly assign it one of the three colors

with probability = g

Probability that a single edge is satisfied = %

. 1 if e is satisfied
Define X, = { -
1NE Ze {O, if e is not satisfied

2 1 2
ElX]=1(3) +0(3) =3
How many edges we expect to satisfy = E[|ALG]| = [Ze ol =2 ElX,]

2
— Ze 3 _l |
2 2 :
= E[ALG] = 2 |E| > = OPT Sln.ce.OPT < |E| (can’t have more
3 satisfied edges than there are edges!)
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connected by ORs, and clauses connected by ANDs.

Can you set the variables to true or
false so that ¢ evaluates to true?
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SAT = {{¢): ¢ is a satisfiable formula}
3SAT = {(¢): ¢ is a satisfiable formula with 3 variables per clause}
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Given a 3-SAT instance, set variable values so that the number of
satisfied clauses is maximized.

X = {xl» X2,X3, X4}

(X Vax, VX)) AN Vg V) A(xg VxsVixy,)

{true, true, false, false} — true A false A true
{true, false, true, false} — true A true A true

Algorithm: Assign x; = true with probability 1/2.
Otherwise, set it to false.
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Define X, — {1, if e is satisfied
° |0, if e is not satisfied

fir) =1(2) +0(2) =

# edges we expect = E[ALG] = E[Y, X, ]
to satisfy =Y. E [Xe]
-%.2= g

2 2
E[ALG] = Z|E| 2 5 OPT

Max 3-SAT

Algorithm: Assign x; = true with probability %
Otherwise, set it to false.

. . . L 7
Probability that a clause is satisfied = 5

Define 7. = 1, if clause c is satisfied
¢ O if clause c is not satisfied

flz=1() +0() =

# clauses we expect = E[ALG] = E[}. Z,]
to satisfy =Y.E|Z.]
7 7

= ch — g C|

7 7
E|ALG] =§|C| Zg OPT
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