# Randomized Algorithms CSCI 432

Family of graph problems that involve coloring vertices (or edges) subject to various constraints.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



<u>Minimum Vertex Coloring</u>: Color the vertices of a graph using the smallest number of colors such adjacent vertices are different colors.



An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time?

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid?

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors.

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors. Optimal?

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors. Optimal? Probably not...

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors. Optimal? Probably not...

Goal: Show this algorithm is expected to perform as a  $\frac{3}{2}$ -approximation algorithm.

Note: if problem is a maximization problem,  $ALG \ge \frac{1}{\alpha} OPT$ 

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is **maximized**.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors. Optimal? Probably not...

Goal: Show this algorithm is expected to perform as a  $\frac{3}{2}$ -approximation algorithm.

An edge in a graph is <u>satisfied</u> if its vertices are colored different colors. Using only three colors, color the vertices of a graph such that the number of satisfied edges is maximized.



Algorithm: For each vertex, randomly assign it one of the three colors with probability 1/3.

Running time? O(n)Valid? Yes. Colors all vertices with  $\leq$  3 colors. Optimal? Probably not...

Goal: Show this algorithm is **expected to perform** as a  $\frac{3}{2}$ -approximation algorithm.

Algorithm: For each vertex, randomly assign it one of the three colors with probability =  $\frac{1}{3}$ .

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

What is the probability that a single edge is satisfied?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

What is the probability that a single edge is satisfied?

Probability of  $= \frac{\text{# events we care about}}{\text{# all possible events}}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

What is the probability that a single edge is satisfied?

All possibilities: (b,b), (b,g), (b,r), (g,b), (g,g), (g,r), (r,b), (r,g), (r,r)

Probability of  $= \frac{\text{# events we care about}}{\text{# all possible events}} = \frac{?}{9}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

What is the probability that a single edge is satisfied?

All possibilities: (b,g), (b,g), (b,r), (g,b), (g,r), (g,r), (r,b), (r,g), (r,g

Probability of  $=\frac{\text{# events we care about}}{\text{# all possible events}} = \frac{6}{9}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

What is the probability that a single edge is satisfied?

All possibilities: (b,g), (b,g), (b,r), (g,b), (g,r), (g,r), (r,b), (r,g), (r,g

Probability of  $= \frac{\text{# events we care about}}{\text{# all possible events}} = \frac{6}{9} = \frac{2}{3}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ . Probability that a single edge is satisfied  $=\frac{2}{3}$ .

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $= \frac{1}{3}$ . Probability that a single edge is satisfied  $= \frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $= \frac{1}{3}$ . Probability that a single edge is satisfied  $= \frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

What is  $\sum_{e} X_{e}$ ?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied =  $\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ What is  $\sum_{e} X_{e}$ ? ALG – It's the number of satisfied edges.

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied =  $\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ What is  $\sum_{e} X_{e}$ ? ALG – It's the number of satisfied edges. What is  $E[\sum_{\rho} X_{\rho}]$ ?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ . Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, & \text{if } e \text{ is satisfied} \\ 0, & \text{if } e \text{ is not satisfied} \end{cases}$ What is  $\sum_{e} X_{e}$ ? ALG – It's the number of satisfied edges. What is  $E[\sum_{e} X_{e}]$ ? The most likely value for ALG.

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $= \frac{1}{3}$ . Probability that a single edge is satisfied  $= \frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e]$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $= \frac{1}{3}$ . Probability that a single edge is satisfied  $= \frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $= \frac{1}{3}$ . Probability that a single edge is satisfied  $= \frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = ?$ 

How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$ 

The expected value of a random variable (E[Y]) is the sum of every possible outcome ( $y_k$ ) times the probability of that outcome ( $p_k$ ):  $E[Y] = \sum_k y_k p_k$
Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied  $=\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, & \text{if } e \text{ is satisfied} \\ 0, & \text{if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right)$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_{\rho} X_{\rho}] = \sum_{\rho} E[X_{\rho}]$ 

The expected value of a random variable (E[Y]) is the sum of every possible outcome ( $y_k$ ) times the probability of that outcome ( $p_k$ ):  $E[Y] = \sum_k y_k p_k$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ . Probability that a single edge is satisfied  $=\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_{\rho} X_{\rho}] = \sum_{\rho} E[X_{\rho}]$ 

The expected value of a random variable (E[Y]) is the sum of every possible outcome ( $y_k$ ) times the probability of that outcome ( $p_k$ ):  $E[Y] = \sum_k y_k p_k$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ . Probability that a single edge is satisfied =  $\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$  $=\sum_{e}\frac{2}{2}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied =  $\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$  $=\sum_{e} \frac{2}{2} = \frac{2}{2} |E|$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied =  $\frac{2}{2}$ . Define  $X_e = \begin{cases} 1, & \text{if } e \text{ is satisfied} \\ 0, & \text{if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{2}\right) + 0\left(\frac{1}{2}\right) = \frac{2}{2}$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$  $=\sum_{e}\frac{2}{2}=\frac{2}{2}|E|$  $\Rightarrow E[ALG] = \frac{2}{3}|E|$ 

Note: if problem is a maximization problem,  $ALG \ge \frac{1}{\alpha} OPT$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ . Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, & \text{if } e \text{ is satisfied} \\ 0, & \text{if } e \text{ is not satisfied} \end{cases}$  $E[X_e] = 1\left(\frac{2}{2}\right) + 0\left(\frac{1}{2}\right) = \frac{2}{2}$ How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$  $=\sum_{e}\frac{2}{2}=\frac{2}{2}|E|$ **OPT**  $\Rightarrow E[ALG] = \frac{2}{3}|E| \ge 4$ 

Note: if problem is a maximization problem,  $ALG \ge \frac{1}{\alpha} OPT$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ . Probability that a single edge is satisfied  $=\frac{2}{3}$ .

Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

How many edges we expect to satisfy  $= E[ALG] = E[\sum_e X_e] = \sum_e E[X_e]$  $= \sum_e \frac{2}{2} = \frac{2}{2}|E|$ 

$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} \ OPT$$

Since  $OPT \le |E|$  (can't have more satisfied edges than there are edges!)

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

 $\phi$  is a formula with clauses composed of Boolean variables connected by ORs, and clauses connected by ANDs.

Can you set the variables to **true** or **false** so that  $\phi$  evaluates to **true**?

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\begin{array}{l} x_1 = false \\ x_2 = true \end{array}$$

$$\begin{array}{l} x_1 = false \\ x_2 = true \end{array}$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$(F \lor F \lor T) \qquad (T \lor F \lor F) \qquad (T \lor T \lor T)$$

$$\downarrow T \qquad T \qquad T$$

 $x_1 = false$  $x_2 = true$ 





 $SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula} \}$  $3SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula with 3 variables per clause} \}$ 

Max 3-SAT

Given a 3-SAT instance, set variable values so that the number of satisfied clauses is maximized.

$$X = \{x_1, x_2, x_3, x_4\}$$

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3 \lor x_4) \land (x_1 \lor x_3 \lor x_4)$$

{true, true, false, false}  $\rightarrow$  true  $\land$  false  $\land$  true {true, false, true, false}  $\rightarrow$  true  $\land$  true  $\land$  true

Max 3-SAT

Given a 3-SAT instance, set variable values so that the number of satisfied clauses is maximized.

$$X = \{x_1, x_2, x_3, x_4\}$$

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3 \lor x_4) \land (x_1 \lor x_3 \lor x_4)$$

{true, true, false, false}  $\rightarrow$  true  $\land$  false  $\land$  true {true, false, true, false}  $\rightarrow$  true  $\land$  true  $\land$  true



Max 3-SAT

Given a 3-SAT instance, set variable values so that the number of satisfied clauses is maximized.

$$X = \{x_1, x_2, x_3, x_4\}$$

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3 \lor x_4) \land (x_1 \lor x_3 \lor x_4)$$

{true, true, false, false}  $\rightarrow$  true  $\land$  false  $\land$  true {true, false, true, false}  $\rightarrow$  true  $\land$  true  $\land$  true

Algorithm: Assign  $x_i$  = true with probability 1/2. Otherwise, set it to false.

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3}$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

|E|

#### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3}$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

|E|

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied = ?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e}^{-c} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied = ?

#### All possibilities:

### (T,T,T), (T,T,F), (T,F,T), (T,F,F) (F,T,T), (F,T,F), (F,F,T), (F,F,F)

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

#### All possibilities:

### (T,T,T), (T,T,F), (T,F,T), (T,F,F) (F,T,T), (F,T,F), (F,F,T), (F,F,F)

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e=1}^{2} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

Alternate Argument: (F,F,F) is the only failing case

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

 $E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$ 

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e}^{2} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

Alternate Argument: (F,F,F) is the only failing case

Probability of (F,F,F)?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

Alternate Argument:

(F,F,F) is the only failing case Probability of (F,F,F)?  $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

Alternate Argument:

(F,F,F) is the only failing case Probability of (F,F,F)?  $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ Probability of anything but that?

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$

# edges we expect =  $E[ALG] = E[\sum_e X_e]$ to satisfy =  $\sum_e E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ .

Alternate Argument: (F,F,F) is the only failing case Probability of (F,F,F)?  $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ Probability of anything but that?  $1 - \frac{1}{8} = \frac{7}{8}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$   
to satisfy =  $\sum_e E[X_e]$ 

to satisfy

 $\Rightarrow$ 

$$= \sum_{e} \frac{1}{2} |E|$$
  
=  $\sum_{e} \frac{2}{3} = \frac{2}{3} |E|$   
=  $\frac{2}{3} |E| \ge \frac{2}{3} OPT$ 

### Max 3-SAT

Algorithm: Assign  $x_i =$  true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$   
to satisfy =  $\sum_e E[X_e]$ 

to satisfy

$$= \sum_{e} \sum_{e} \sum_{x=1}^{n} \sum_$$

### Max 3-SAT

Algorithm: Assign  $x_i =$  true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

$$E[Z_c] =$$

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$   
to satisfy =  $\sum_e E[X_e]$ 

to satisfy

 $\Rightarrow$ 

$$E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i =$  true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

$$E[Z_c] = 1\left(\frac{7}{8}\right) + 0\left(\frac{1}{8}\right) = \frac{7}{8}$$

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$ 

to satisfy  $E = \sum_{e} E[X_e]$ 

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3} |E| \ge \frac{2}{3} OPT$$

### Max 3-SAT

Algorithm: Assign  $x_i =$  true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

$$E[Z_c] = 1\left(\frac{7}{8}\right) + 0\left(\frac{1}{8}\right) = \frac{7}{8}$$

# clauses we expect =  $E[ALG] = E[\sum_{c} Z_{c}]$ to satisfy =  $\sum_{c} E[Z_{c}]$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{3}$ .

Probability that a single edge is satisfied =  $\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$ 

to satisfy

$$= \sum_{e}^{2} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

 $= \sum_{\alpha} E[X_{\alpha}]$ 

### Max 3-SAT

Algorithm: Assign  $x_i$  = true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

$$E[Z_c] = 1\left(\frac{7}{8}\right) + 0\left(\frac{1}{8}\right) = \frac{7}{8}$$

# clauses we expect =  $E[ALG] = E[\sum_{c} Z_{c}]$ to satisfy  $= \sum_{c} E[Z_{c}]$  $= \sum_{c} \frac{7}{8} = \frac{7}{8}|C|$ 

Algorithm: For each vertex, randomly assign it one of the three colors with probability  $=\frac{1}{2}$ .

Probability that a single edge is satisfied  $=\frac{2}{3}$ . Define  $X_e = \begin{cases} 1, \text{ if } e \text{ is satisfied} \\ 0, \text{ if } e \text{ is not satisfied} \end{cases}$ 

$$E[X_e] = 1\left(\frac{2}{3}\right) + 0\left(\frac{1}{3}\right) = \frac{2}{3}$$
  
# edges we expect =  $E[ALG] = E[\sum_e X_e]$ 

 $=\sum_{e} E[X_{e}]$ to satisfy

$$= \sum_{e} \frac{2}{3} = \frac{2}{3} |E|$$
$$\Rightarrow E[ALG] = \frac{2}{3}|E| \ge \frac{2}{3} OPT$$

E

### Max 3-SAT

Algorithm: Assign  $x_i =$  true with probability  $\frac{1}{2}$ . Otherwise, set it to false.

Probability that a clause is satisfied  $=\frac{7}{8}$ . Define  $Z_c = \begin{cases} 1, \text{ if clause } c \text{ is satisfied} \\ 0, \text{ if clause } c \text{ is not satisfied} \end{cases}$ 

$$E[Z_c] = 1\left(\frac{7}{8}\right) + 0\left(\frac{1}{8}\right) = \frac{7}{8}$$

# clauses we expect =  $E[ALG] = E[\sum_{c} Z_{c}]$ to satisfy  $=\sum_{c} E[Z_{c}]$  $=\sum_{c}\frac{7}{2}=\frac{7}{2}|C|$ 

$$\Rightarrow E[ALG] = \frac{7}{8}|C| \ge \frac{7}{8} \ OPT$$