
Test 3 Review
CSCI 432



End of Semester Logistics

1. Take Test 3 on Thursday 5/1.

2. Test 3 grades up on 5/1.

3. Final letter grade, assuming you skip final, up on 5/1-5/3

4. Final exam 12:00 – 1:50 on 5/8.

Final Exam:
• Cumulative.
• No risk to try (I drop your lowest of four test grades).
• If your final letter grade is listed as an ‘A’, do not 

come to the final.



Test 3 Logistics

1. During class on Thursday 5/1.

2. You can bring your book and any notes you would like, but no 
electronic devices.

3. You may assume anything proven in class or on homework.

4. Five questions (15 points):
1) Running time (2 points).
2) Running time (2 points). 
3) Approximation ratio (5 points).
4) “Tight” example (3 points).
5) Vertex Cover LP question (3 points).

Same 
Problem
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Given a graph 𝐺 = (𝑉, 𝐸), find a cut (partition of 𝑉 into two sets) that 
maximizes the number of edges crossing the cut.
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Given a graph 𝐺 = (𝑉, 𝐸), find a cut (partition of 𝑉 into two sets) that 
maximizes the number of edges crossing the cut.

Proposed Algorithm: 

1. For each vertex 𝑣, put 𝑣 in set 𝐴 with 
probability 0.5. Otherwise put in set 𝐵.
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Vertex Cover ILP

If 𝑥𝑖 ≥
1

2
, add vertex 𝑖 

to our subset 𝑆.+
Is 𝑆 a vertex cover? 
 Yes. For every edge, 𝑥𝑖 + 𝑥𝑗 ≥ 1. Thus, at least one of 𝑥𝑖 or 

𝑥𝑗  ≥
1

2
. So for every edge, at least one of its vertices will be in 𝑆.

𝑥𝑖 ∈ 0,1  = Indicates if vertex 𝑖 is selected.
Objective: min σ𝑖 𝑥𝑖

Subject to: 𝑥𝑖 + 𝑥𝑗 ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

Review lecture from April 10th 
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