
Dynamic Programming
CSCI 432

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

A problem exhibits optimal substructure if removing part of an
optimal solution results in an optimal solution to a smaller problem.

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

A problem exhibits optimal substructure if removing part of an
optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming:
 Leverage optimal sub-structure.

Fundamental Algorithmic Techniques

“Sledgehammers”:

• Dynamic Programming

• Linear Programming

Precision Tools:

• Greedy

• Randomization

• Reductions

Dynamic Programing vs Divide and Conquer

Dynamic Programming
• Optimal substructure.

• Overlapping subproblems.

Divide and Conquer
• Independent, recursive

subproblems (mergesort).

Dynamic Programming Process:
1.Characterize structure of optimal solution.
2.Recursively define value of optimal solution.
3.Compute value of optimal solution.
4.Construct optimal solution from computed information.

Making Change

How can I represent 37 cents with the smallest number of coins?

Making Change

How can I represent 37 cents with the smallest number of coins?

 Quarter, dime, two pennies (25 + 10 + 2 = 37) – four coins.

 Algorithm: ?

Making Change

How can I represent 37 cents with the smallest number of coins?

 Quarter, dime, two pennies (25 + 10 + 2 = 37) – four coins.

 Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?

Making Change

How can I represent 37 cents with the smallest number of coins?

 Quarter, dime, two pennies (25 + 10 + 2 = 37) – four coins.

 Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?

 Two 18-cent coins, penny – three coins.

Making Change
In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

Can we characterize 𝐶(𝑝)
in terms of 𝐶(𝑝 − 𝑥)?

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

𝐶 𝑝 = ???

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

Can we characterize 𝐶(𝑝)
in terms of 𝐶(𝑝 − 𝑥)?

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

𝐶 𝑝 = 𝐶 𝑝 − 𝑥 + 1

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

𝐶 𝑝 =

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

𝐶 𝑝 − 𝑥 + 1

But we don’t know what actual
coin is in the optimal solution.

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

min
𝑑𝑖≤𝑝

𝐶 𝑝 − 𝑑𝑖 + 1𝐶 𝑝 =

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

So, we’ll check
all possibilities.

But we don’t know what actual
coin is in the optimal solution.

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

min
𝑑𝑖≤𝑝

𝐶 𝑝 − 𝑑𝑖 + 1𝐶 𝑝 =
Least change for 20 cents is minimum of:

• least change for 20-10 = 10 cents
• least change for 20-5 = 15 cents
• least change for 20-1 = 19 cents

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

So, we’ll check
all possibilities.

But we don’t know what actual
coin is in the optimal solution.

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

min
𝑑𝑖≤𝑝

𝐶 𝑝 − 𝑑𝑖 + 1 , 𝑝 > 0

? , 𝑝 = 0
𝐶 𝑝 =

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

So, we’ll check
all possibilities.

But we don’t know what actual
coin is in the optimal solution.

Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

So, we’ll check
all possibilities.

But we don’t know what actual
coin is in the optimal solution.

min
𝑑𝑖≤𝑝

𝐶 𝑝 − 𝑑𝑖 + 1 , 𝑝 > 0

0 , 𝑝 = 0
𝐶 𝑝 =

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14 9

1
5

10

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

9

1
5

10

1
5

10

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7

9

1
5

10

1
5

10

1
5

10

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7

9

0

1
5

10

1
5

10

1
5

10

1

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

𝒌𝟐

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

𝒌𝟐

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

𝒌𝟐

𝒌𝒑

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for𝑂(𝑘𝑝)

Making Change – Recursive

change(p)

 if p == 0

 return 0

 else

 min = ∞

 for di ≤ p

 a = change(p-di)

 if a < min

 min = a

 return 1 + min

Running time?
 𝑂(𝑘𝑝) ∈ Ω(Bad)

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

𝒌

𝒌𝟐

𝒌𝒑

Make $0.19 with $0.01, $0.05, $0.10
 𝑘 = # denominations
 𝑝 = value to make change for

Big-Omega: Asymptotic
lower bound.

Making Change – Dynamic Programing

How do I make
change for $0.33?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Making Change – Dynamic Programing

If I know the best way to make
change for $0.01 - $0.32, how
can I figure out the best way
to make change for $0.33?

How do I make
change for $0.33?

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Making Change – Dynamic Programing

If I know the best way to make
change for $0.01 - $0.32, how
can I figure out the best way
to make change for $0.33?

How do I make
change for $0.33?

change $0.33 = min

change $0.08 + 1

change $0.23 + 1

change $0.28 + 1

change $0.32 + 1

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Making Change – Dynamic Programing

If I know the best way to make
change for $0.01 - $0.32, how
can I figure out the best way
to make change for $0.33?

How do I make
change for $0.33?

change $0.33 = min

change $0.08 + 1

change $0.23 + 1

change $0.28 + 1

change $0.32 + 1

19

18 14

17 13 8

16 12 7 7 3

9

0

1
5

10

1
5

10

1
5

10 1 5

1

Ground up vs Top down
Sub problems vs Explicit recursion

Saving your work vs Doing the same things multiple times

Making Change – Dynamic Programing

If I know the best way to make
change for $0.01 - $0.32, how
can I figure out the best way
to make change for $0.33?

change $0.33 = min

change $0.08 + 1

change $0.23 + 1

change $0.28 + 1

change $0.32 + 1

Plan (for value 𝑝):

1. Calculate optimal change
for each value less than 𝑝.

2. Save those values.

3. Apply formula to find
optimal change for 𝑝.

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal
values for all values ≤ 𝒑.

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal
values for all values ≤ 𝒑.

find optimal change
amounts starting with 1.

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal
values for all values ≤ 𝒑.

find optimal change
amounts starting with 1.

for each denomination value.

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal
values for all values ≤ 𝒑.

find optimal change
amounts starting with 1.

for each denomination value.

check optimal value of m – di

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 ? ? ? ? ? ? ? ?

Suppose we are filling this out
for m = 13.

Chng[]

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 ? ? ? ? ? ? ? ?

Suppose we are filling this out
for m = 13.

di = 10:

di = 5:

di = 1:
 Chng[]

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 ? ? ? ? ? ? ? ?

Suppose we are filling this out
for m = 13.

di = 10:
 Chng[13–10]+1 = 4

di = 5:

di = 1:

Chng[]

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 ? ? ? ? ? ? ? ?

Suppose we are filling this out
for m = 13.

di = 10:
 Chng[13–10]+1 = 4

di = 5:
 Chng[13–5]+1 = 5

di = 1:

Chng[]

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 ? ? ? ? ? ? ? ?

Chng[]

Suppose we are filling this out
for m = 13.

di = 10:
 Chng[13–10]+1 = 4

di = 5:
 Chng[13–5]+1 = 5

di = 1:
 Chng[13–1]+1 = 4

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 4 ? ? ? ? ? ? ?

Suppose we are filling this out
for m = 13.

di = 10:
 Chng[13–10]+1 = 4

di = 5:
 Chng[13–5]+1 = 5

di = 1:
 Chng[13–1]+1 = 4 Chng[]

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2

Chng[]

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Running time?

𝑘 = # denominations
𝑝 = value to make change for

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Running time?

 Outer for loop ∈ 𝑂(𝑝)

 Inner for loop ∈ 𝑂(𝑘)

 Total ∈ 𝑂(𝑝𝑘)

𝑘 = # denominations
𝑝 = value to make change for

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

Running time?

 Size of array ∈ 𝑂(𝑝)

 Checks per spot ∈ 𝑂(𝑘)

 Time per check ∈ 𝑂(1)

 Total ∈ 𝑂(𝑝𝑘)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2

Chng[]
𝑘 = # denominations
𝑝 = value to make change for

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

What if we want the
actual coin values for
the optimal solution?

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

What if we want the
actual coin values for
the optimal solution?

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞, coin = 0

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 Chng[m] = min

 return Chng[p]

What if we want the
actual coin values for
the optimal solution?

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞, coin = 0

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 coin = di

 Chng[m] = min

 return Chng[p]

What if we want the
actual coin values for
the optimal solution?

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞, coin = 0

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 coin = di

 Chng[m] = min

 lastCoin[m] = coin

 return lastCoin

What if we want the
actual coin values for
the optimal solution?

Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

 min = ∞, coin = 0

 for di ≤ m

 if Chng[m – di] + 1 < min

 min = Chng[m – di] + 1

 coin = di

 Chng[m] = min

 lastCoin[m] = coin

 return lastCoin

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = 0

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 =

remain = 13

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10

remain = 13

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10

remain = 3

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1

remain = 3

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1

remain = 2

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1 + 1

remain = 2

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1 + 1

remain = 1

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1 + 1 + 1

remain = 1

Making Change – Dynamic Programing

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:

13 = 10 + 1 + 1 + 1

remain = 0

	Slide 1: Dynamic Programming CSCI 432
	Slide 2: Dynamic Programing
	Slide 3: Dynamic Programing
	Slide 4: Dynamic Programing
	Slide 5: Dynamic Programing
	Slide 6: Fundamental Algorithmic Techniques
	Slide 7: Dynamic Programing vs Divide and Conquer
	Slide 8: Making Change
	Slide 9: Making Change
	Slide 10: Making Change
	Slide 11: Making Change
	Slide 12: Making Change
	Slide 13: Making Change
	Slide 14: Making Change
	Slide 15: Making Change
	Slide 16: Making Change
	Slide 17: Making Change
	Slide 18: Making Change
	Slide 19: Making Change
	Slide 20: Making Change
	Slide 21: Making Change – Recursive
	Slide 22: Making Change – Recursive
	Slide 23: Making Change – Recursive
	Slide 24: Making Change – Recursive
	Slide 25: Making Change – Recursive
	Slide 26: Making Change – Recursive
	Slide 27: Making Change – Recursive
	Slide 28: Making Change – Recursive
	Slide 29: Making Change – Recursive
	Slide 30: Making Change – Recursive
	Slide 31: Making Change – Recursive
	Slide 32: Making Change – Recursive
	Slide 33: Making Change – Recursive
	Slide 34: Making Change – Recursive
	Slide 35: Making Change – Recursive
	Slide 36: Making Change – Dynamic Programing
	Slide 37: Making Change – Dynamic Programing
	Slide 38: Making Change – Dynamic Programing
	Slide 39: Making Change – Dynamic Programing
	Slide 40: Making Change – Dynamic Programing
	Slide 41: Making Change – Dynamic Programing
	Slide 42: Making Change – Dynamic Programing
	Slide 43: Making Change – Dynamic Programing
	Slide 44: Making Change – Dynamic Programing
	Slide 45: Making Change – Dynamic Programing
	Slide 46: Making Change – Dynamic Programing
	Slide 47: Making Change – Dynamic Programing
	Slide 48: Making Change – Dynamic Programing
	Slide 49: Making Change – Dynamic Programing
	Slide 50: Making Change – Dynamic Programing
	Slide 51: Making Change – Dynamic Programing
	Slide 52: Making Change – Dynamic Programing
	Slide 53: Making Change – Dynamic Programing
	Slide 54: Making Change – Dynamic Programing
	Slide 55: Making Change – Dynamic Programing
	Slide 56: Making Change – Dynamic Programing
	Slide 57: Making Change – Dynamic Programing
	Slide 58: Making Change – Dynamic Programing
	Slide 59: Making Change – Dynamic Programing
	Slide 60: Making Change – Dynamic Programing
	Slide 61: Making Change – Dynamic Programing
	Slide 62: Making Change – Dynamic Programing
	Slide 63: Making Change – Dynamic Programing
	Slide 64: Making Change – Dynamic Programing
	Slide 65: Making Change – Dynamic Programing
	Slide 66: Making Change – Dynamic Programing
	Slide 67: Making Change – Dynamic Programing
	Slide 68: Making Change – Dynamic Programing
	Slide 69: Making Change – Dynamic Programing
	Slide 70: Making Change – Dynamic Programing
	Slide 71: Making Change – Dynamic Programing

