Dynamic Programming
CSCl1 432

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

A problem exhibits optimal substructure if removing part of an
optimal solution results in an optimal solution to a smaller problem.

Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

A problem exhibits optimal substructure if removing part of an
optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming:
Leverage optimal sub-structure.

Fundamental Algorithmic Techniques

“Sledgehammers”:
* Dynamic Programming
* Linear Programming

Precision Tools:
* Greedy

* Randomization
* Reductions

Dynamic Programing vs Divide and Conquer

Dynamic Programming Divide and Conquer

e Optimal substructure. * Independent, recursive
* Overlapping subproblems. subproblems (mergesort).

Dynamic Programming Process:
1.Characterize structure of optimal solution.

2.Recursively define value of optimal solution.

3.Compute value of optimal solution.
4.Construct optimal solution from computed information.

Making Change

How can | represent 37 cents with the smallest number of coins?

Making Change

How can | represent 37 cents with the smallest number of coins?
Quarter, dime, two pennies (25 + 10 + 2 = 37) — four coins.

Algorithm: ?

Making Change

How can | represent 37 cents with the smallest number of coins?
Quarter, dime, two pennies (25 + 10 + 2 = 37) — four coins.

Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?

Making Change

How can | represent 37 cents with the smallest number of coins?
Quarter, dime, two pennies (25 + 10 + 2 = 37) — four coins.

Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?
Two 18-cent coins, penny — three coins.

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(UScoins:d; =1,d, =5,d; =10,d, = 25)

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(UScoins:d; =1,d, =5,d; =10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(UScoins:d; =1,d, =5,d; =10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

Can we characterize C(p)
intermsof C(p — x)?

C(p) = ???

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(UScoins:d; =1,d, =5,d; =10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

Can we characterize C(p)
interms of C(p — x)?

Clp)= Clp—x)+1

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(US coins:dy =1,d, = 5,d; = 10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

But we don’t know what actual

/ coin is in the optimal solution.

Clp)= Clp—x)+1

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d

(US coins: dl — 1, dz — 5, d3 — 10, d4 — 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

>0, we I,I (.:I?e.ck But we don’t know what actual
all possibilities. :
/ coin is in the optimal solution.

'

C(p) = gun(](p d;)+1

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d

(US coins: dl — 1, dz — 5, d3 — 10, d4 — 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

>0, we I,I (,:he,Ck But we don’t know what actual
all possibilities. L. : .
/ coin is in the optimal solution.

'

C(p) = gun(](p d;)+1
(=P Least change for 20 cents is minimum of:

* |east change for 20-10 = 10 cents
 |east change for 20-5 = 15 cents
* |east change for 20-1 =19 cents

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(US coins:dy =1,d, = 5,d; = 10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

>0, we I,I c.:l?e.ck But we don’t know what actual
all possibilities. :
/ coin is in the optimal solution.

'

minC(p—d;))+1,p>0
C(p) =<7
? ,p=20

In general, suppose a country has denominations:

Making Change 1 =d; <dy < <d
(US coins:dy =1,d, = 5,d; = 10,d, = 25)

C(p) — minimum number of coins to make p cents.
x — value (e.g. S0.25) of a coin used in the optimal solution.

>0, we I,I c.:l?e.ck But we don’t know what actual
all possibilities. :
/ coin is in the optimal solution.

'

minC(p—d;))+1,p>0
C(p) = {4=P
0 ,p=20

Making Change — Recursive

change(p)
if p ==
return 0
else
min = o
for d; < p
a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Recursive

change(p) Running time?
if p ==
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return 0
else
min = o
for d; < p
a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

. [?
change (p) Running time: k = # denominations
if p == p = value to make change for
return O
eTSe. 19
min = o 1 . 10
for d; < p
a = change(p-d;) 18 14 ?

if a < min
min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

. [?
change (p) Running time: k = # denominations
if p == p = value to make change for
return O
eTSe. 19
min = o 1 . 10
for d; < p
a = change(p-d;) 18 14 ?
_ : 1 10
if a < min >
min = a 17 13 8

return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

. [?
change (p) Running time: k = # denominations
if p == p = value to make change for
return O
eTSe. 19
min = o 1 . 10
for d; < p
a = change(p-d;) 18 14 ?
_ : 1 10
if a < min >
17 13 8

min = a
1 10
5

16 12 7

return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

. [?
change (p) Running time: k = # denominations
if p == p = value to make change for
return O
eTSe. 19
min = o 1 . 10
for d; < p
a = change(p-d;) 18 14 ?
_ : 1 10
if a < min >
min = a 17 13 8
1 10
return 1 + min >
16 12 7/

’
L
’I

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

change(p) Running time? k = # denominations
if p == p = value to make change for
return O
else 19
min = o 1 10
for d; < p)
~ 0 18 14 9
5.1 = change(p d;) 1 0 TN T
if a < min >
min = a 17 }]3\ 8
10 5
return 1 + min %\ 1\
16 12 7 7/ 3
1,7 TN l\ / I

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return 0
else
min = o
for d; < p
a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return 0
else
min = o
for d; < p
a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min

min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min

min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10
k = # denominations
p = value to make change for

change(p) Running time?
if p ==
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min

min = a
return 1 + min

Making Change — Recursive

: : Make $0.19 with $0.01, $0.05, $0.10
?))
change(p) Running time: I~ # denominations

ifp== O(kp) p = value to make change for
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min

min = a
return 1 + min

Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

change(p) Running time? k = # denominations
e = O(kp) € 'Q(Bad) p = value to make change for
return 0
else Big-Omega: Asymptotic
min = o lowerbound.
for d; < p

a = change(p-d;)
if a < min
min = a
return 1 + min

Making Change — Dynamic Programing

How do | make
change for $0.33°?

19
1 10

Making Change — Dynamic Programing

How do | make
change for $0.33°?

19
1 10

18 14 9
1 10 TN T~
17 8
1 10 /N 1N

If | know the best way to make
change for $0.01 - $0.32, how
can | figure out the best way
to make change for $0.337

Making Change — Dynamic Programing

How do | make If | know the best way to make
change for S0.33? change for S0.01 - S0.32, how
19 can | figure out the best way
LT TN to make change for $0.337
1 18 10 /114\ /]9\
15 :513 o (change($0.08) + 1
1 10 /N IS

SR change(5033) = min {0t 1
| change($0.32) + 1

Making Change — Dynamic Programing

How do | make If | know the best way to make
change for S0.33? change for S0.01 - $0.32, how
19 can | figure out the best way
LT TN to make change for $0.337
15 o (change($0.08) + 1
1 10 /N IS

/ilz\ 7 /{7\? change($0.33) = min+ Eﬁzgzigggg; i 1
| change($0.32) + 1

Ground up vs Top down
Sub problems vs Explicit recursion
Saving your work vs Doing the same things multiple times

Making Change — Dynamic Programing

Plan (for value p):

1.

Calculate optimal change
for each value less than p.

. Save those values.
. Apply formula to find

optimal change for p.

If | know the best way to make
change for $0.01 - $0.32, how

can | figure out t
to make change

change($0.33) = min <

he best way
for S0.33?

(change($0.08) + 1
change($0.23) + 1
change($0.28) + 1

| change($0.32) + 1

Making Change — Dynamic Programing

changeDP(p)
Cchng[O,...,p] = [0,...,0]
for m =1 to p
min = o
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

array holding optimal
Cha‘Cnl’lgnegD[PO(,p_)_ .,p] = [0,...,0] — valuzles for allgva‘:ues < p.
for m =1 to p
min = o
for d; < m

if chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chng[p]

Making Change — Dynamic Programing

changeDP (p) array holding optimal
Chgng[O p. ..ol = [0,...,0] 4 values for all values < p.
for m = 1 to p « find optimal change
min = oo amounts starting with 1.
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) array holding optimal
4« values for all values < p.
Cchng[O,...,p] = [0,...,0] P
for m = 1 to p « find optimal change
min = o amounts starting with 1.
for d; < m <« for each denomination value.

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) array holding optimal
4« values for all values < p.
Cchng[O,...,p] = [0,...,0] P
for m = 1 to p « find optimal change
min = o amounts starting with 1.
for d; < m <« for each denomination value.

if chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min \ check optimal value of m — d;
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
for m =1 to p
min = o
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min

return chng[p] Chng[]\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o112 |34 |12 |3 |4 5|12 |3 |?2 2|22 ?2]?2?]7?

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
form =1 to p d: = 10:
min = o
for d. < .
AN d'i = 5:

if Chng[m - d;] + 1 < min
m1'n=(.:hng[m— d;] + 1 di = 1:
Chng[m] = min

return chng[p] Chng[]\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o112 |34 |12 |3 |4 5|12 |3 |?2 2|22 ?2]?2?]7?

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
for m =1 to p d: = 10:
min = o Chng[13-10]+1 = 4
for d'i <m d — §-

if Chng[m - d;] + 1 < min
m1'n=(.:hng[m— d;] + 1 di = 1:
Chng[m] = min

return chng[p] Chng[]\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o112 |3(4|1 2|3 |4 5|12 |3 |?2 (2|22 ?2]??]7?

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
for m =1 to p d: = 10:
min = o Chng[13-10]+1 = 4
for d; < m d'i — -
if Chng[m - d;] + 1 < min chng[13-5]+1 = 5

min = Chng[m - d;] + 1 d. = 1-
Cchng[m] = min o

return chng[p] Chng[]\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o112 |3(4|1 2|34 5|12 |3 |?2 (2|22 ?2]??]?

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
for m =1 to p d: = 10:
min = o Chng[13-10]+1 = 4
for d; < m d'i — -
if Chng[m - d;] + 1 < min chng[13-5]+1 = 5

min = Chng[m - d;] + 1 4 - 1-
Chng[m] = min i = .

Ch 13-1]+1

return Cchnglp] Chng[]\ ngl 1+

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[l
N

o112 |34 |12 |3 |4 5|12 |3 |?2 (2|22 ?2]??]?

Making Change — Dynamic Programing

changeDP (p) Suppose we are filling this out
chng[O,...,p] = [0,...,0] form = 13.
for m =1 to p d: = 10:
min = o Chng[13-10]+1 = 4
for d; < m d'i — -
if Chng[m - d;] + 1 < min chng[13-5]+1 = 5

min = Chng[m - d;] + 1 4 - 1-
Chng[m] = min i = .

Ch 13-1]+1

return Cchnglp] Chng[]\ ngl 1+

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[l
N

o112 |3(4|1|2 3|4 5|12 3|4 |?2 |22 ?2]??2]°?

Making Change — Dynamic Programing

changeDP(p)
Cchng[O,...,p] = [0,...,0]
for m =1 to p
min = o
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min

return chng[p] Chng []\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o|j1(2}3|4(1}2|3/4 5|12 (3|4 ,5|2|3|4|5]6]2

Making Change — Dynamic Programing

changeDP (p) Running timef?
Cchng[O,...,p] = [0,...,0]
for m =1 to p
min = o
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
chng[m] = min k = # denominations
return Chng[p] p = value to make change for

Making Change — Dynamic Programing

changeDP (p) Running time?
chngl@,...,pl = [0,...,0] Outer for loop € O(p)

for m =1 to p I
min = o Inner for loop € O(k)

for d; < m Total € O(pk)

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
chng[m] = min k = # denominations
return Chngl[p] p = value to make change for

Making Change — Dynamic Programing

changeDP (p) Running time?

chng[O,...,p] = [0,...,0] Size of array € O(p)

for m =1 to p "
min = o Checks per spot € O (k)
for d; <m Time per check € 0(1)
if Chng[m - d;] + 1 < min Total € O(pk)
min = Chng[m - d;] + 1
chng[m] = min k = # denominations
return Cchng[p] Chr](—:’[:l\p:value to make change for

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o|j1(2}3|4(1}2|3/4 5|12 (3|4 ,5|2|3|4|5]6]2

Making Change — Dynamic Programing

changeDP (p) What if we want the
Cchng[O,...,p] = [0,...,0] actual coin values for
for m =1 to p the optimal solution?
min = o
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) What if we want the
chng[O,...,p] = [0,...,0] actual coin values for
lastCoin[0,...,p]l = [0,...,0] the optimal solution?
for m =1 to p
min = oo
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) What if we want the
Chng[O,...,p] = [0,...,0] actual coin values for
lastCoin[O,...,p] = [0,...,0] the optimal solution?

for m =1 to p
min = o, coin = 0
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min

return Chnglp]

Making Change — Dynamic Programing

changeDP (p) What if we want the
Chng[O,...,p] = [0,...,0] actual coin values for
lastCoin[O,...,p] = [0,...,0] the optimal solution?

for m =1 to p
min = o, coin = 0
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
coin = d;
Chng[m] = min
return Chnglp]

Making Change — Dynamic Programing

changeDP (p) What if we want the
Chng[O,...,p] = [0,...,0] actual coin values for
lastCoin[O,...,p] = [0,...,0] the optimal solution?

for m =1 to p
min = o, coin = 0
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
coin = d;
Chng[m] = min
lastCoin[m] = coin
return lastCoin

Making Change — Dynamic Programing

changebdP(p) lastCoin is an array of
Chng[O,...,p] = [0,...,0] the final coins added to
lastcoin[O0,...,p] = [0,...,0] the optimal solutions.
form =1 top How do we get all of the
min = o, coin = 0 coins in the solution?
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
coin = d;
Chng[m] = min
lastCoin[m] = coin
return lastCoin

Making Change — Dynamic Programing

lastCoin is an array of

remain = 0 the final coins added to

Set<Integer> coins the optimal solutions.

while remain > 0 How do we get all of the
coin = lastCoin[remain] coins in the solution?

coins.add(coin)
remain = remain - coin

1 2 3 4 5 6 7 8 9 10 11 12 13
chng[]:|0|1|2|3|4|1|2|3|4|5|1|2]|3]|4

lastCoin[]:{O0 |21 |1 1|1 |5|1|5|5|1(10|10| 1 |10

Making Change — Dynamic Programing

remain = 13 lastCoin is an array of

remain = p the final coins added to
Set<Integer> coins the optimal solutions.
while remain > 0 How do we get all of the
coin = lastCoin[remain] coins in the solution?
coins.add(coin)
remain = remain - coin 13 =

1 2 3 4 5 6 7 8 9 10 11 12 13
chng[l:|0|1|2|3|4|1|2|3|4|5|1|2|3]24

lastCoin[]:{O0 |21 |1 1|1 |5|1|5|5|1(10|10| 1 |10

Making Change — Dynamic Programing

| remain = 13
remain = p

Set<Integer> coins

while remain > O
coin = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - coin 13 = 10
1 2 3 4 5 6 7 8 9 10 11 12 13
chng[]l:|0 |1 |2 |3 |41 3 511|234
lastCcoinf]:f0}2}2}1 (1 (51,5 5]1]10{10| 1|10

Making Change — Dynamic Programing

| remain = 3
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - coin 13 = 10
1 2 3 4 5 /7 8 9 10 11 12 13
chng[]l:|0 |1 |2 |3 |41 3 511|234
5/5|1,1010| 1 |10

lastCoin[]:f 0|1 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 3
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - co1n 13 = 10 + 1
1 2 3 4 5 /7 8 9 10 11 12 13
chng[]:| 0| 1|2 |3]|4]1 3 5/1(2|3]| 4
5(/5|11]10(10} 1 |10

lastCoin[]:{ 0|1 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 2
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - col1n 13 = 10 + 1
1 2 3 4 5 /7 8 9 10 11 12 13
chng[]:| 0| 1|2 |3]|4]1 3 5/1(2|3]| 4
5(/5|11]10(10} 1 |10

lastCoin[]:{ 0|1 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 2
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - co1n 13 =10 + 1 + 1
1 2 3 4 5 /7 8 9 10 11 12 13

chng[]:| 0| 1|2 |3]|4]1 3 5/1(2|3]| 4
5(/5|11]10(10} 1 |10

lastCoin[]:{ 0|21 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 1
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - col1n 13 =10 + 1 + 1
1 2 3 4 5 /7 8 9 10 11 12 13

chng[]:| 0| 1|2 |3]|4]1 3 5/1(2|3]| 4
5(/5|11]10(10} 1 |10

lastCoin[]:{ 0|21 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 1
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - co1n 13 =10 + 1 + 1 + 1
1 2 3 4 5 /7 8 9 10 11 12 13
chng[]l:|0 |1 |2 |3 |41 3 511|234
5(/5|11]10(10} 1 |10

lastCoin[]:f 0|21 | 1|1 |1]|5

Making Change — Dynamic Programing

| remain = 0
remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - col1n 13 =10 + 1 + 1 + 1
1 2 3 4 5 /7 8 9 10 11 12 13
chng[]l:|0 |1 |2 |3 |41 3 511|234
5(/5|11]10(10} 1 |10

lastCoin[]:fO0O |1 | 1|1 |1]|5

	Slide 1: Dynamic Programming CSCI 432
	Slide 2: Dynamic Programing
	Slide 3: Dynamic Programing
	Slide 4: Dynamic Programing
	Slide 5: Dynamic Programing
	Slide 6: Fundamental Algorithmic Techniques
	Slide 7: Dynamic Programing vs Divide and Conquer
	Slide 8: Making Change
	Slide 9: Making Change
	Slide 10: Making Change
	Slide 11: Making Change
	Slide 12: Making Change
	Slide 13: Making Change
	Slide 14: Making Change
	Slide 15: Making Change
	Slide 16: Making Change
	Slide 17: Making Change
	Slide 18: Making Change
	Slide 19: Making Change
	Slide 20: Making Change
	Slide 21: Making Change – Recursive
	Slide 22: Making Change – Recursive
	Slide 23: Making Change – Recursive
	Slide 24: Making Change – Recursive
	Slide 25: Making Change – Recursive
	Slide 26: Making Change – Recursive
	Slide 27: Making Change – Recursive
	Slide 28: Making Change – Recursive
	Slide 29: Making Change – Recursive
	Slide 30: Making Change – Recursive
	Slide 31: Making Change – Recursive
	Slide 32: Making Change – Recursive
	Slide 33: Making Change – Recursive
	Slide 34: Making Change – Recursive
	Slide 35: Making Change – Recursive
	Slide 36: Making Change – Dynamic Programing
	Slide 37: Making Change – Dynamic Programing
	Slide 38: Making Change – Dynamic Programing
	Slide 39: Making Change – Dynamic Programing
	Slide 40: Making Change – Dynamic Programing
	Slide 41: Making Change – Dynamic Programing
	Slide 42: Making Change – Dynamic Programing
	Slide 43: Making Change – Dynamic Programing
	Slide 44: Making Change – Dynamic Programing
	Slide 45: Making Change – Dynamic Programing
	Slide 46: Making Change – Dynamic Programing
	Slide 47: Making Change – Dynamic Programing
	Slide 48: Making Change – Dynamic Programing
	Slide 49: Making Change – Dynamic Programing
	Slide 50: Making Change – Dynamic Programing
	Slide 51: Making Change – Dynamic Programing
	Slide 52: Making Change – Dynamic Programing
	Slide 53: Making Change – Dynamic Programing
	Slide 54: Making Change – Dynamic Programing
	Slide 55: Making Change – Dynamic Programing
	Slide 56: Making Change – Dynamic Programing
	Slide 57: Making Change – Dynamic Programing
	Slide 58: Making Change – Dynamic Programing
	Slide 59: Making Change – Dynamic Programing
	Slide 60: Making Change – Dynamic Programing
	Slide 61: Making Change – Dynamic Programing
	Slide 62: Making Change – Dynamic Programing
	Slide 63: Making Change – Dynamic Programing
	Slide 64: Making Change – Dynamic Programing
	Slide 65: Making Change – Dynamic Programing
	Slide 66: Making Change – Dynamic Programing
	Slide 67: Making Change – Dynamic Programing
	Slide 68: Making Change – Dynamic Programing
	Slide 69: Making Change – Dynamic Programing
	Slide 70: Making Change – Dynamic Programing
	Slide 71: Making Change – Dynamic Programing

