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Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number
of items possible that cost $17. One broom costs $10. What
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items
possible that cost $7.

A problem exhibits optimal substructure if removing part of an
optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming:
Leverage optimal sub-structure.



Fundamental Algorithmic Techniques

“Sledgehammers”:
* Dynamic Programming
* Linear Programming

Precision Tools:
* Greedy

* Randomization
* Reductions



Dynamic Programing vs Divide and Conquer

Dynamic Programming Divide and Conquer

e Optimal substructure. * Independent, recursive
* Overlapping subproblems. subproblems (mergesort).

Dynamic Programming Process:
1.Characterize structure of optimal solution.

2.Recursively define value of optimal solution.

3.Compute value of optimal solution.
4.Construct optimal solution from computed information.
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Making Change

How can | represent 37 cents with the smallest number of coins?
Quarter, dime, two pennies (25 + 10 + 2 = 37) — four coins.

Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?
Two 18-cent coins, penny — three coins.
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In general, suppose a country has denominations:
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C(p) — minimum number of coins to make p cents.
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all possibilities. ... . :
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Make $0.19 with $0.01, $0.05, $0.10
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change(p) Running time?
if p ==
return O
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min = o
for d; < p
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Making Change — Recursive

: : Make $0.19 with $0.01, $0.05, $0.10
? ) )
change(p) Running time: I~ # denominations

ifp== O(kp) p = value to make change for
return O
else
min = o
for d; < p
a = change(p-d;)
if a < min

min = a
return 1 + min




Making Change — Recursive

Make $0.19 with $0.01, $0.05, $0.10

change(p) Running time? k = # denominations
e = O(kp) € 'Q(Bad) p = value to make change for
return 0
else Big-Omega: Asymptotic
min = o lowerbound.
for d; < p

a = change(p-d;)
if a < min
min = a
return 1 + min
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Making Change — Dynamic Programing

How do | make If | know the best way to make
change for S0.33? change for S0.01 - $0.32, how
19 can | figure out the best way
LT TN to make change for $0.337
15 o (change($0.08) + 1
1 10 /N IS

/ilz\ 7 /{7\? change($0.33) = min+ Eﬁzgzigggg; i 1
| change($0.32) + 1

Ground up vs Top down
Sub problems vs Explicit recursion
Saving your work vs Doing the same things multiple times



Making Change — Dynamic Programing

Plan (for value p):

1.

Calculate optimal change
for each value less than p.

. Save those values.
. Apply formula to find

optimal change for p.

If | know the best way to make
change for $0.01 - $0.32, how

can | figure out t
to make change

change($0.33) = min <

he best way
for S0.33?

(change($0.08) + 1
change($0.23) + 1
change($0.28) + 1

| change($0.32) + 1
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changeDP(p)
Cchng[O,...,p] = [0,...,0]
for m =1 to p
min = o
for d; < m
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return Chnglp]
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changeDP (p) array holding optimal
4« values for all values < p.
Cchng[O,...,p] = [0,...,0] P
for m = 1 to p « find optimal change
min = o amounts starting with 1.
for d; < m <« for each denomination value.

if chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
Chng[m] = min \ check optimal value of m — d;
return Chnglp]
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changeDP (p) Running time?

chng[O,...,p] = [0,...,0] Size of array € O(p)

for m =1 to p "
min = o Checks per spot € O (k)
for d; <m Time per check € 0(1)
if Chng[m - d;] + 1 < min Total € O(pk)
min = Chng[m - d;] + 1
chng[m] = min k = # denominations
return Cchng[p] Chr](—:’[:l\p:value to make change for
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changeDP (p) What if we want the
Chng[O,...,p] = [0,...,0] actual coin values for
lastCoin[O,...,p] = [0,...,0] the optimal solution?

for m =1 to p
min = o, coin = 0
for d; < m
if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
coin = d;
Chng[m] = min
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Making Change — Dynamic Programing

changebdP(p) lastCoin is an array of
Chng[O,...,p] = [0,...,0] the final coins added to
lastcoin[O0,...,p] = [0,...,0] the optimal solutions.
form =1 top How do we get all of the
min = o, coin = 0 coins in the solution?
for d; < m

if Chng[m - d;] + 1 < min
min = Chng[m - d;] + 1
coin = d;
Chng[m] = min
lastCoin[m] = coin
return lastCoin
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lastCoin is an array of

remain = 0 the final coins added to

Set<Integer> coins the optimal solutions.

while remain > 0 How do we get all of the
coin = lastCoin[remain] coins in the solution?

coins.add(coin)
remain = remain - coin

1 2 3 4 5 6 7 8 9 10 11 12 13
chng[]:|0|1|2|3|4|1|2|3|4|5|1|2]|3]|4

lastCoin[]:{O0 |21 |1 1|1 |5|1|5|5|1(10|10| 1 |10
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remain = p the final coins added to
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remain = remain - coin 13 =

1 2 3 4 5 6 7 8 9 10 11 12 13
chng[l:|0|1|2|3|4|1|2|3|4|5|1|2|3]24

lastCoin[]:{O0 |21 |1 1|1 |5|1|5|5|1(10|10| 1 |10




Making Change — Dynamic Programing

| remain = 13
remain = p

Set<Integer> coins

while remain > O
coin = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - coin 13 = 10
1 2 3 4 5 6 7 8 9 10 11 12 13
chng[]l:|0 |1 |2 |3 |41 3 511|234
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remain = p

Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)

lastCoin is an array of
the final coins added to
the optimal solutions.

How do we get all of the
coins in the solution?

remain = remain - coin 13 = 10
1 2 3 4 5 /7 8 9 10 11 12 13
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Set<Integer> coins

while remain > O
coln = lastCoin[remain]
coins.add(coin)
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