Dynamic Programming CSCI 432

{1 broom + 2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$17. One broom costs \$10. What can you conclude?

{1 broom + 2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$17. One broom costs \$10. What can you conclude?

{2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$7.

- {1 broom + 2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$17. One broom costs \$10. What can you conclude?
- {2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$7.

A problem exhibits optimal substructure if removing part of an optimal solution results in an optimal solution to a smaller problem.

{1 broom + 2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$17. One broom costs \$10. What can you conclude?

{2 "cool rocks" + 1 chair} are the smallest number of items possible that cost \$7.

A problem exhibits optimal substructure if removing part of an optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming: Leverage optimal sub-structure.

Fundamental Algorithmic Techniques

"Sledgehammers":

- Dynamic Programming
- Linear Programming

Precision Tools:

- Greedy
- Randomization
- Reductions

Dynamic Programing vs Divide and Conquer

Dynamic Programming

- Optimal substructure.
- Overlapping subproblems.

Divide and Conquer

• Independent, recursive subproblems (mergesort).

Dynamic Programming Process:

- 1. Characterize structure of optimal solution.
- 2. Recursively define value of optimal solution.
- 3. Compute value of optimal solution.
- 4. Construct optimal solution from computed information.

How can I represent 37 cents with the smallest number of coins?

How can I represent 37 cents with the smallest number of coins? Quarter, dime, two pennies (25 + 10 + 2 = 37) -four coins.

Algorithm: ?

How can I represent 37 cents with the smallest number of coins? Quarter, dime, two pennies (25 + 10 + 2 = 37) -four coins.

Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?

How can I represent 37 cents with the smallest number of coins? Quarter, dime, two pennies (25 + 10 + 2 = 37) -four coins.

Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin? Two 18-cent coins, penny – three coins.

Making Change

$$1 = d_1 < d_2 < \dots < d_k$$

(US coins:
$$d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$$
)

Making Change

$$1 = d_1 < d_2 < \dots < d_k$$

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

Making Change

 $1 = d_1 < d_2 < \dots < d_k$

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

Can we characterize C(p)in terms of C(p - x)?

C(p) = ???

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

- C(p) minimum number of coins to make p cents.
- x value (e.g. \$0.25) of a coin used in the optimal solution.

Can we characterize C(p)in terms of C(p - x)?

C(p) = C(p-x) + 1

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

But we don't know what actual coin is in the optimal solution.

C(p) = C(p-x) + 1

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

So, we'll check all possibilities. $C(p) = \min_{d_i \le n} C(p - d_i) + 1$

But we don't know what actual coin is in the optimal solution.

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

So, we'll check all possibilities. $C(p) = \min_{d_i \le p} C(p - d_i) + 1$

But we don't know what actual coin is in the optimal solution.

Least change for 20 cents is minimum of:

- least change for 20-10 = 10 cents
- least change for 20-5 = 15 cents
- least change for 20-1 = 19 cents

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

C(p) – minimum number of coins to make p cents.

x – value (e.g. \$0.25) of a coin used in the optimal solution.

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

- C(p) minimum number of coins to make p cents.
- x value (e.g. \$0.25) of a coin used in the optimal solution.

change(p) **if** p == 0 return 0 else min = ∞ for $d_i \leq p$ $a = change(p-d_i)$ if a < min min = a**return** 1 + min

Running time? change(p) **if** p == 0 return 0 else min = ∞ for $d_i \leq p$ $a = change(p-d_i)$ if a < min min = a**return** 1 + min

Running time? change(p) **if** p == 0 return 0 else min = ∞ for $d_i \leq p$ $a = change(p-d_i)$ if a < min min = a**return** 1 + min

Make \$0.19 with \$0.01, \$0.05, \$0.10 k = # denominations p = value to make change for

change(p) **if** p == 0 return 0 else min = ∞ for $d_i \leq p$ $a = change(p-d_i)$ if a < min min = a**return** 1 + min

Running time?

Make \$0.19 with \$0.01, \$0.05, \$0.10 *k* = # denominations

p = value to make change for

Running time? change(p) **if** p == 0 return 0 else min = ∞ for $d_i \leq p$ $a = change(p-d_i)$ if a < min min = a**return** 1 + min

Make \$0.19 with \$0.01, \$0.05, \$0.10 k = # denominations

p = value to make change for

How do I make change for \$0.33?

How do I make change for \$0.33?

If I know the best way to make change for \$0.01 - \$0.32, how can I figure out the best way to make change for \$0.33?

How do I make change for \$0.33?

If I know the best way to make change for \$0.01 - \$0.32, how can I figure out the best way to make change for \$0.33?

change(\$0.33) = min $\begin{cases} change($0.08) + 1 \\ change($0.23) + 1 \\ change($0.28) + 1 \\ change($0.28) + 1 \\ change($0.32) + 1 \end{cases}$

How do I make change for \$0.33?

If I know the best way to make change for \$0.01 - \$0.32, how can I figure out the best way to make change for \$0.33?

```
change(\$0.33) = min 

\begin{cases}
change(\$) \\
change(\$) \\
change(\$)
\end{cases}
```

change((0.08) + 1change((0.23) + 1change((0.28) + 1change((0.32) + 1

Ground up vs Top down Sub problems vs Explicit recursion Saving your work vs Doing the same things multiple times

Plan (for value *p*):

- 1. Calculate optimal change for each value less than *p*.
- 2. Save those values.
- 3. Apply formula to find optimal change for *p*.

If I know the best way to make change for \$0.01 - \$0.32, how can I figure out the best way to make change for \$0.33?

```
change((0.33) = \min \begin{cases} 0 \\ 0 \\ 0 \end{cases}
```

change(\$0.08) + 1change(\$0.23) + 1change(\$0.28) + 1change(\$0.32) + 1

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
           min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

array holding optimal

values for all values $\leq p$.

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
           min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

Making Change – Dynamic Programing array holding optimal changeDP(p) values for all values $\leq p$. Chng[0,...,p] = [0,...,0]for m = 1 to p - find optimal change amounts starting with 1. $min = \infty$ for $d_i \leq m$ if $Chng[m - d_i] + 1 < min$ $min = Chng[m - d_i] + 1$ Chng[m] = min**return** Chng[p]

Making Change – Dynamic Programing array holding optimal changeDP(p) values for all values $\leq p$. Chng[0,...,p] = [0,...,0]for m = 1 to p - find optimal change amounts starting with 1. $\min = \infty$ for $d_i \leq m$ \triangleleft for each denomination value. if $Chng[m - d_i] + 1 < min$ $min = Chng[m - d_i] + 1$ Chng[m] = min**return** Chng[p]

Making Change – Dynamic Programing array holding optimal changeDP(p) values for all values $\leq p$. Chng[0,...,p] = [0,...,0]for m = 1 to p - find optimal change amounts starting with 1. $\min = \infty$ for $d_i \leq m$ \triangleleft for each denomination value. if $Chng[m - d_i] + 1 < min$ $min = Chng[m - d_i] + 1$ Chng[m] = min \sim check optimal value of $m - d_i$ **return** Chng[p]

```
changeDP(p)
                                          Suppose we are filling this out
                                         for m = 13.
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
           min = Chng[m - d_i] + 1
     Chng[m] = min
                              Chng[]-
  return Chng[p]
            4 5
                   6 7 8
                                            13
                                               14 15 16 17 18 19
                               9
                                     11 12
0
      2
        3
                                                                     20
   1
                                  10
                               5
                                          3
                     2
                                                                      ?
       2
          3
                 1
                        3
                            4
                                   1
                                      2
                                             ?
                                                 ?
                                                    ?
                                                        ?
                                                           ?
                                                               ?
                                                                  ?
0
   1
              4
```

```
changeDP(p)
                                          Suppose we are filling this out
                                          for m = 13.
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
                                          d_i = 10:
     min = ∞
     for d_i \leq m
                                          d_i = 5:
        if Chng[m - d_i] + 1 < min
           min = Chng[m - d_i] + 1
                                          d_i = 1:
     Chng[m] = min
                              Chng[]-
  return Chng[p]
            4 5
                            8
                                                14 15 16 17 18
                     6 7
                                  10
                                     11 12 13
0
       2
        3
                               9
                                                                      20
   1
                                                                  19
                               5
                                          3
                     2
                                                                      ?
       2
          3
                 1
                        3
                            4
                                   1
                                      2
                                              ?
                                                 ?
                                                     ?
                                                        ?
                                                            ?
                                                               ?
                                                                   ?
0
   1
              4
```


changeDP(p)												Suppose we are filling this out									
	Chr	ng[C),	.,p)] =	= [0	,	.,0		for $m = 13$.											
	for	• m	= 1	. to	р					$d_i = 10$:											
		min	= 0	∞						Chng[13-10]+1 = 4											
		for	d_i	≤ n	1					d.	=	5:	-								
		i	f	hng	 [m	– d	l _i] ·	+ 1		Chng[13-5]+1 = 5											
			m	in =	= Cł	nng	[m -	- d _i		d.	_	1.	5 -		-						
Chng[m] = min													_	±.							
return Chng[p]																					
													¥								
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
0	1	2	3	4	1	2	3	4	5	1	2	3	?	?	?	?	?	?	?	?	

changeDP(p)												Suppose we are filling this out									
	Chr	ng[C),	.,p) =	= [0),	.,0		for $m = 13$.											
	for	• m	= 1	. to	р					$d_i = 10$:											
	I	min	= (x						chng[13-10]+1 = 4											
	-	for	d_{i}	≤ n	1					d.	=	5:									
		i	f	chng	[m	– d	I _i] ·	+ 1		- 1	⊦1	= 5									
$min = Chng[m - d_i] + 1$													_	1•	5 -		-				
Chng[m] = min Chng[n] Chng[n]													_	Chr	ng[13-	1]-	⊦1	= 4	-	
	i e t	_ui i		ΠġĹ	L4.																
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
0	1	2	3	4	1	2	3	4	5	1	2	3	?	?	?	?	?	?	?	?	

```
changeDP(p)
                                         Suppose we are filling this out
                                         for m = 13.
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
                                         d_i = 10:
     min = ∞
                                              Chng[13-10]+1 = 4
     for d_i \leq m
                                         d_i = 5:
        if Chng[m - d_i] + 1 < min
                                              Chng[13-5]+1 = 5
           min = Chng[m - d_i] + 1
                                         d_i = 1:
     Chng[m] = min
                                              Chng[13-1]+1 = 4
                              Chng[]-
  return Chng[p]
                           8
                               9
                                        12 13
                                               14 15 16 17
                                                             18
0
      2
          3
                5
                    6
                      7
                                     11
   1
             4
                                  10
                                                                 19
                                                                    20
                               5
                                         3
                    2
       2
          3
                 1
                        3
                           4
                                  1
                                      2
                                                    ?
                                                       ?
                                                          ?
                                                                     ?
0
   1
                                            4
                                                ?
                                                              ?
             4
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
                             Chng[]—
  return Chng[p]
      2 3 4 5
                  6 7 8
                                   11 12 13
                                             14 15 16 17 18 19
                              9
                                10
0
                                                                  20
   1
                              5
                                        3
                    2
                                 1
                                     2
                                               5
                                                     3
                                                            5
                                                                   2
   1
      2
          3
                 1
                       3
                          4
                                           4
                                                  2
                                                               6
0
             4
                                                         4
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

Running time?

k = # denominationsp = value to make change for

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

Running time? Outer for loop $\in O(p)$ Inner for loop $\in O(k)$ Total $\in O(pk)$

k = # denominations p = value to make change for

```
changeDP(p)
                                              Running time?
  Chng[0,...,p] = [0,...,0]
                                                 Size of array \in O(p)
  for m = 1 to p
                                                 Checks per spot \in O(k)
     min = ∞
                                                 Time per check \in O(1)
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
                                                 Total \in O(pk)
           min = Chng[m - d_i] + 1
                                                k = \# denominations
     Chng[m] = min
                                Chng[]-
                                                p = value to make change for
   return Chng[p]
              4
                             8
                                           12
                                                          16 17
0
       2
          3
                  5
                     6
                         7
                                9
                                               13
                                                  14 15
                                                                18
                                                                        20
   1
                                    10
                                       11
                                                                     19
                                 5
                                            3
                      2
                                                          3
                                                                         2
       2
           3
                  1
                         3
                             4
                                    1
                                        2
                                                   5
                                                      2
                                                                  5
                                                                     6
0
    1
                                               4
              4
                                                              4
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  lastCoin[0,...,p] = [0,...,0]
  for m = 1 to p
     min = ∞
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  lastCoin[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty, coin = 0
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
     Chng[m] = min
  return Chng[p]
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  lastCoin[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty, coin = 0
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
           coin = d_i
     Chng[m] = min
  return Chng[p]
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  lastCoin[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty, coin = 0
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
          coin = d_i
     Chng[m] = min
     lastCoin[m] = coin
  return lastCoin
```

```
changeDP(p)
  Chng[0,...,p] = [0,...,0]
  lastCoin[0,...,p] = [0,...,0]
  for m = 1 to p
     min = \infty, coin = 0
     for d_i \leq m
        if Chng[m - d_i] + 1 < min
          min = Chng[m - d_i] + 1
          coin = d_i
     Chng[m] = min
     lastCoin[m] = coin
  return lastCoin
```

lastCoin is an array ofthe final coins added tothe optimal solutions.How do we get all of thecoins in the solution?

remain = 0
Set<Integer> coins
while remain > 0
 coin = lastCoin[remain]
 coins.add(coin)
 remain = remain - coin

lastCoin is an array ofthe final coins added tothe optimal solutions.How do we get all of the

coins in the solution?

lastCoin is an array of remain = 13the final coins added to remain = pthe optimal solutions. Set<Integer> coins while remain > 0 How do we get all of the coin = lastCoin[remain] coins in the solution? coins.add(coin) remain = remain - coin 13 =

remain = 13remain = pSet<Integer> coins while remain > 0 coin = lastCoin[remain] coins.add(coin) remain = remain - coin

lastCoin is an array of the final coins added to the optimal solutions.

How do we get all of the coins in the solution?

13 = 10

lastCoin is an array of remain = 3the final coins added to remain = pthe optimal solutions. Set<Integer> coins while remain > 0 How do we get all of the coin = lastCoin[remain] coins in the solution? coins.add(coin) remain = remain - coin 13 = 101 2 3 12 13 Chng[]: lastCoin[]:

remain = p
Set<Integer> coins
while remain > 0
Coin = lastCoin[remain]
coins.add(coin)
remain = remain - coin

lastCoin is an array of the final coins added to the optimal solutions.

How do we get all of the coins in the solution?

13 = 10 + 1

lastCoin is an array of remain = 2remain = pSet<Integer> coins while remain > 0 coin = lastCoin[remain] coins.add(coin) remain = remain - coin 1 2 3 Chng[]:

lastCoin[]:

the final coins added to the optimal solutions. How do we get all of the coins in the solution?

12 13

13 = 10 + 1

remain = p
Set<Integer> coins
while remain > 0
coin = lastCoin[remain]

coin = lastCoin[remain]
coins.add(coin)

remain = remain - coin

lastCoin is an array of the final coins added to the optimal solutions.

How do we get all of the coins in the solution?

13 = 10 + 1 + 1

lastCoin is an array of remain = 1the final coins added to remain = pthe optimal solutions. Set<Integer> coins while remain > 0 How do we get all of the coin = lastCoin[remain] coins in the solution? coins.add(coin) remain = remain - coin 13 = 10 + 1 + 11 2 3 12 13 Chng[]: lastCoin[]:

remain = p
Set<Integer> coins
while remain > 0
Coin = lastCoin[remain]
coins.add(coin)

remain = remain - coin

lastCoin is an array of the final coins added to the optimal solutions.

How do we get all of the coins in the solution?

13 = 10 + 1 + 1 + 1

lastCoin is an array of remain = 0the final coins added to remain = pthe optimal solutions. Set<Integer> coins while remain > 0 How do we get all of the coin = lastCoin[remain] coins in the solution? coins.add(coin) remain = remain - coin 13 = 10 + 1 + 1 + 11 2 3 Chng[]:

lastCoin[]

12 13