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Dynamic Programing

{1 broom + 2 “cool rocks” + 1 chair} are the smallest number 
of items possible that cost $17. One broom costs $10. What 
can you conclude?

{2 “cool rocks” + 1 chair} are the smallest number of items 
possible that cost $7.

A problem exhibits optimal substructure if removing part of an 
optimal solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming:
 Leverage optimal sub-structure.



Fundamental Algorithmic Techniques

“Sledgehammers”:

• Dynamic Programming

• Linear Programming

Precision Tools:

• Greedy

• Randomization

• Reductions



Dynamic Programing vs Divide and Conquer

Dynamic Programming
• Optimal substructure.

• Overlapping subproblems.

Divide and Conquer
• Independent, recursive 

subproblems (mergesort).

Dynamic Programming Process:
1.Characterize structure of optimal solution.
2.Recursively define value of optimal solution.
3.Compute value of optimal solution.
4.Construct optimal solution from computed information.
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Making Change

How can I represent 37 cents with the smallest number of coins?

 Quarter, dime, two pennies (25 + 10 + 2 = 37) – four coins.

 Algorithm: Max quarters + max dimes + ...

What if there were also an 18-cent coin?

 Two 18-cent coins, penny – three coins.
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change(p)

 if p == 0

  return 0

 else

  min = ∞

  for di ≤ p
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Big-Omega: Asymptotic 
lower bound.
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Ground up vs Top down
Sub problems vs Explicit recursion

Saving your work vs Doing the same things multiple times



Making Change – Dynamic Programing

If I know the best way to make 
change for $0.01 - $0.32, how 
can I figure out the best way 
to make change for $0.33?

change $0.33 = min

change $0.08 + 1

change $0.23 + 1

change $0.28 + 1

change $0.32 + 1

Plan (for value 𝑝):

1. Calculate optimal change 
for each value less than 𝑝.

2. Save those values.

3. Apply formula to find 
optimal change for 𝑝.



changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing



changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal 
values for all values ≤ 𝒑.



changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal 
values for all values ≤ 𝒑.

find optimal change 
amounts starting with 1.



changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Making Change – Dynamic Programing
array holding optimal 
values for all values ≤ 𝒑.

find optimal change 
amounts starting with 1.

for each denomination value.



changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1
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Making Change – Dynamic Programing
array holding optimal 
values for all values ≤ 𝒑.

find optimal change 
amounts starting with 1.

for each denomination value.

check optimal value of m – di
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changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Running time?
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changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

Running time?

 Size of array ∈ 𝑂(𝑝)

 Checks per spot ∈ 𝑂(𝑘)

 Time per check ∈ 𝑂(1)

 Total ∈ 𝑂(𝑝𝑘)
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Making Change – Dynamic Programing

changeDP(p)

 Chng[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

  Chng[m] = min

 return Chng[p]

What if we want the 
actual coin values for 
the optimal solution?
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 Chng[0,...,p] = [0,...,0]
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 for m = 1 to p

  min = ∞, coin = 0

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1
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  Chng[m] = min

 return Chng[p]
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 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞, coin = 0

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1
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  Chng[m] = min
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the optimal solution?
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 Chng[0,...,p] = [0,...,0]

 lastCoin[0,...,p] = [0,...,0]

 for m = 1 to p

  min = ∞, coin = 0

  for di ≤ m

   if Chng[m – di] + 1 < min

    min = Chng[m – di] + 1

    coin = di

  Chng[m] = min

  lastCoin[m] = coin

 return lastCoin

lastCoin is an array of 
the final coins added to 
the optimal solutions.

How do we get all of the 
coins in the solution?
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lastCoin is an array of 
the final coins added to 
the optimal solutions.

How do we get all of the 
coins in the solution?

remain = 0

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:

lastCoin[]:
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lastCoin is an array of 
the final coins added to 
the optimal solutions.

How do we get all of the 
coins in the solution?

remain = p

Set<Integer> coins

while remain > 0

 coin = lastCoin[remain]

 coins.add(coin)

 remain = remain - coin

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 1 2 3 4 5 1 2 3 4

0 1 1 1 1 5 1 5 5 1 10 10 1 10

Chng[]:
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13 = 10 + 1 + 1 + 1
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