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Rod Cutting

length | 1

profit | S1

Given a rod of length n and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.
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Given a rod of length n and a table of prices,

determine the maximum profit obtainable

by cutting the rod up and selling the pieces.
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Assume there is a profit > 0

Rod Cutti ng for each possible length.
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Rod Cutting

Can we use dynamic programming?



Rod Cutting

Does the rod cutting problem have optimal substructure?



Assume there is a profit = 0

Rod CUttlng for each possible length.
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Does the rod cutting problem have optimal substructure?

l.e. Does an optimal solution to an instance
imply an optimal solution to a smaller instance?

profit |S1|S5|S8(S9]...
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Optimal partition
forsize=n — 3
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Does the rod cutting problem have optimal substructure?

Yes! Given an optimal partition for n, every

subset of that partition must also be optimal

for its size!
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0,, = optimal profit from partitioning rod of length n.
p; = profit for rod of length i.

I




Rod Cutting

length | 1| 2| 3| 4

profit |S1|S5|S8(S9]...

0,, = optimal profit from partitioning rod of length n.
p; = profit for rod of length i.

On:I

How can we recursively calculate 0,, from smaller
solutions, leveraging the optimal substructure?

$?



Rod Cutting

length | 1

profit |S1

0,, = optimal profit from partitioning rod of length n.
p; = profit for rod of length i.

On

max (p; + Op—;)

1<i<n
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Rod Cutting

Algorithm Plan:
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Algorithm Plan:
1. Initialize array to hold
what we care about.
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small to large.
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Algorithm}? Algorithm Plan:

1. Initialize array to hold
what we care about.

2. Fill out array from
small to large.

3. Fill out array using:
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Rod Cutting

partition(n, p)

r[O,...,n] = [0,...,0] Algorithm Plan:
for m =1 to n 1. Initialize array to hold
max = 0 what we care about.
for length 1 < m 2. Fill out array from
if rm - 1] + p; > max small to large.
max = rim - 1] + p; 3. Fill out array using:
rlm] = max 0, = max(p; + 0p,_;)

return r[n] Ist=n



Rod Cutting

partition(n, p) Running Time?
r(0,...,n] = [0,...,0]
for m = 1 to n
max = 0O

for length T < m
if rm - 1] + p; > max
max = r[m - 1] + p;
r[m] = max
return r[n]



Rod Cutting

partition(n, p) Running Time?
r(0,...,n] = [0,...,0] O(nz)
for m = 1 to n
max = 0

for length T < m
if rm - 1] + p; > max
max = r[m - 1] + p;
r[m] = max
return r[n]



Problem Statement

Suppose we have a graph of this form:

(8 —(6 —3)—6
&

Goal: Find a subset of vertices such that they do not share
any edges with each other, and the sum of their weights (w;)

IS maximized.
) N
(O—03—@

Example: @ ‘




Find counter example for this algorithm:

maxweightl(G = (v, E))
S =0
while VvV = 0
Let v; be node of max weight from Vv
AddV-itOS
Delete v; and neighbors from G
return S

Goal: Find a subset of vertices such that they
do not share any edges with each other, and
the sum of their weights (w;) is maximized.



Find counter example for this algorithm:

maxweightl(G = (v, E))
S =0
while VvV = 0
Let v; be node of max weight from Vv
AddV-itOS
Delete v; and neighbors from G
return S

‘ @ Goal: Find a subset of vertices such that they

do not share any edges with each other, and
‘ the sum of their weights (w;) is maximized.




Find counter example for this algorithm:

_ Goal: Find a subset of
maxweight2(G = (v, E)) vertices such that they
Let S; = v; where 1 1s odd do not share any edges

Let S, = v; where 1 1s even with each other, and the

return maxweight(S;, S,) sum of their weights (w;)
is maximized.



Find counter example for this algorithm:

maxweight2 (G =
Let S; = v; where 1 1s odd
Let S, = v; where 1 1s even

return maxweight(s;, S,)
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Goal: Find a subset of
vertices such that they
do not share any edges
with each other, and the
sum of their weights (w;)
is maximized.



Make an algorithm:

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (w;) is maximized.

O—O—O—O @




Make an algorithm:

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges
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Is there an optimal substructure? Does an optimal solution to
V._{ = {vq, ..., v;_1} translate to an optimal solution to V; = {v,, ..., v;}?




Make an algorithm:

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (w;) is maximized.

O—O—O—O @

Is there an optimal substructure? Does an optimal solution to
V._i = {vq, ..., v;_1} translate to an optimal solution to V; = {v,, ..., v;}?

Yes(ish). Optimal solution to V; is either the optimal for IV/;_; (with
vertex i discarded), or the optimal for V;_, (with vertex i included).



Make an algorithm:

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges

with each other, and the sum of their weights (w;) is maximized.

Optimal solution to V/; is either the optimal for I/;_; (with vertex i
discarded), or the optimal for V;_, (with vertex i included).

|\
Let A|i| be the )
weight of the optimal Ali] =R

solution for V;.




Make an algorithm:

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (w;) is maximized.

Optimal solution to V/; is either the optimal for I/;_; (with vertex i
discarded), or the optimal for V;_, (with vertex i included).

Let A|i] be the
weight of the optimal Ali] = max (
solution for V;.

Afi —1]
Ali — 2] +Wi)



: Input: n node graph, G = (V,E), with
Make an algorithm: vertex weights. W)

Output: Weight of the heaviest vertex
subset that do not share edges.

maxweight(G = (V, E))

?

Ali] — weight of the optimal
solution for V;.

Ali — 1] )

Ali] = max (A[i — 2] + w;

Running time € 2



: Input: n node graph, G = (V,E), with
Make an algorithm: vertex weights. W)

Output: Weight of the heaviest vertex
subset that do not share edges.

maxweight(G = (V, E))
A[O,...,n] = [O,w;,0,...,0]
for 1 = 2,...,n
A[1] = max(A[1 - 1], A[1 - 2] + w;)
return A[n]

Ali] — weight of the optimal
solution for V;.

Ali — 1] )

Ali] = max (A[i — 2] + w;

Running time € 0(n)
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