Dynamic Programming CSCI 432

length	1	2	3	4
profit	\$1	\$5	\$8	\$9

length1234profit\$1\$5\$8\$9

profit = \$9

Can we use dynamic programming?

Does the rod cutting problem have optimal substructure?

Does the rod cutting problem have optimal substructure?

I.e. Does an optimal solution to an instance imply an optimal solution to a smaller instance?

Does the rod cutting problem have optimal substructure?

Yes! Given an optimal partition for *n*, every subset of that partition must also be optimal for its size!

Rod Cutting length 1 2 3 4 ... n profit \$1 \$5 \$8 \$9 ... \$?

 O_n = optimal profit from partitioning rod of length n. p_i = profit for rod of length i.

Rod Cutting length 1 2 3 4 ... n profit \$1 \$5 \$8 \$9 ... \$?

 O_n = optimal profit from partitioning rod of length n. p_i = profit for rod of length i.

$O_n =$?

How can we recursively calculate O_n from smaller solutions, leveraging the optimal substructure?

Rod Cutting length 1 2 3 4 ... n profit \$1 \$5 \$8 \$9 ... \$?

 O_n = optimal profit from partitioning rod of length n. p_i = profit for rod of length i.

$$O_n = \max_{1 \le i \le n} (p_i + O_{n-i})$$

Algorithm Plan:

?

Algorithm Plan: 1. Initialize array to hold what we care about.

Algorithm Plan:
1. Initialize array to hold what we care about.
2. Fill out array from small to large.

Algorithm Plan:

- 1. Initialize array to hold
 - what we care about.
- 2. Fill out array from small to large.
- 3. Fill out array using:

$$O_n = \max_{1 \le i \le n} (p_i + O_{n-i})$$

Algorithm Plan:

- 1. Initialize array to hold what we care about.
- 2. Fill out array from small to large.
- 3. Fill out array using:

$$O_n = \max_{1 \le i \le n} (p_i + O_{n-i})$$

```
partition(n, p)
  r[0,...,n] = [0,...,0]
  for m = 1 to n
     max = 0
     for length 1 \leq m
        if r[m - 1] + p_1 > max
          max = r[m - 1] + p_1
     r[m] = max
  return r[n]
```

Algorithm Plan:

- 1. Initialize array to hold what we care about.
- 2. Fill out array from small to large.
- 3. Fill out array using: $O_n = \max_{1 \le i \le n} (p_i + O_{n-i})$

```
partition(n, p)
  r[0,...,n] = [0,...,0]
  for m = 1 to n
     max = 0
     for length 1 \leq m
        if r[m - 1] + p_1 > max
          max = r[m - 1] + p_1
     r[m] = max
  return r[n]
```

Running Time?

```
partition(n, p)
  r[0,...,n] = [0,...,0]
  for m = 1 to n
     max = 0
     for length 1 \leq m
        if r[m - 1] + p_1 > max
          max = r[m - 1] + p_1
     r[m] = max
  return r[n]
```

```
Running Time? O(n^2)
```

Problem Statement

Suppose we have a graph of this form:

Goal: Find a subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.


```
maxWeight1(G = (V, E))
S = Ø
while V ≠ Ø
Let v<sub>i</sub> be node of max weight from V
Add v<sub>i</sub> to S
Delete v<sub>i</sub> and neighbors from G
return S
```

Goal: Find a subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

```
maxWeight1(G = (V, E))
S = Ø
while V ≠ Ø
Let v<sub>i</sub> be node of max weight from V
Add v<sub>i</sub> to S
Delete v<sub>i</sub> and neighbors from G
return S
```


Goal: Find a subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

maxWeight2(G = (V, E))
Let S₁ = v_i where i is odd
Let S₂ = v_i where i is even
return maxWeight(S₁, S₂)

Goal: Find a subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

maxWeight2(G = (V, E))
Let $S_1 = v_i$ where i is odd
Let $S_2 = v_i$ where i is even
return maxWeight(S_1 , S_2)

Goal: Find a subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

$$(w_1)$$
 (w_2) (w_3) (w_4) (w_4) (w_1)

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

$$(w_1)$$
 (w_2) (w_3) (w_4) (w_n)

Is there an optimal substructure? Does an optimal solution to $V_{i-1} = \{v_1, \dots, v_{i-1}\}$ translate to an optimal solution to $V_i = \{v_1, \dots, v_i\}$?

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

$$(w_1)$$
 (w_2) (w_3) (w_4) (w_n)

Is there an optimal substructure? Does an optimal solution to $V_{i-1} = \{v_1, \dots, v_{i-1}\}$ translate to an optimal solution to $V_i = \{v_1, \dots, v_i\}$?

Yes(ish). Optimal solution to V_i is either the optimal for V_{i-1} (with vertex *i* discarded), or the optimal for V_{i-2} (with vertex *i* included).

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

Optimal solution to V_i is either the optimal for V_{i-1} (with vertex *i* discarded), or the optimal for V_{i-2} (with vertex *i* included).

|A|i| = ||A|

Let A[i] be the weight of the optimal solution for V_i .

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

Optimal solution to V_i is either the optimal for V_{i-1} (with vertex *i* discarded), or the optimal for V_{i-2} (with vertex *i* included).

Let A[i] be the weight of the optimal $A[i] = \max \begin{pmatrix} A[i-1] \\ A[i-2] + w_i \end{pmatrix}$ solution for V_i .

Input: *n* node graph, G = (V, E), with vertex weights.

Output: Weight of the heaviest vertex subset that do not share edges.

maxWeight(G = (V, E))

?

A[i] – weight of the optimal solution for V_i .

$$A[i] = \max \begin{pmatrix} A[i - 1] \\ A[i - 2] + w_i \end{pmatrix}$$

Input: *n* node graph, G = (V, E), with vertex weights.

Output: Weight of the heaviest vertex subset that do not share edges.

maxWeight(G = (V, E))
 A[0,...,n] = [0,w₁,0,...,0]
 for i = 2,...,n
 A[i] = max(A[i - 1], A[i - 2] + w_i)
 return A[n]

A[i] – weight of the optimal solution for V_i .

$$A[i] = \max \begin{pmatrix} A[i-1] \\ A[i-2] + w_i \end{pmatrix}$$

Running time $\in O(n)$