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Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

Given a rod of length 𝑛 and a table of prices, 
determine the maximum profit obtainable 
by cutting the rod up and selling the pieces.
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Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9 profit = $4

profit = $9

Given a rod of length 𝑛 and a table of prices, 
determine the maximum profit obtainable 
by cutting the rod up and selling the pieces.

Assume there is a profit ≥ 𝟎 
for each possible length.



Rod Cutting

Can we use dynamic programming? 
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Rod Cutting

Does the rod cutting problem have optimal substructure? 

I.e. Does an optimal solution to an instance 
imply an optimal solution to a smaller instance? 

𝑛

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Assume there is a profit ≥ 0 
for each possible length.



Rod Cutting

Does the rod cutting problem have optimal substructure? 

Yes! Given an optimal partition for 𝑛, every 
subset of that partition must also be optimal 
for its size!

𝑛

⋯

Optimal partition 
for size = 𝑛 − 3

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?



Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖. 
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Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖. 

 𝑂𝑛 = ?

⋯

How can we recursively calculate 𝑂𝑛 from smaller 
solutions, leveraging the optimal substructure?

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?



Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖. 

 𝑂𝑛 = max
1≤𝑖≤𝑛

𝑝𝑖 + 𝑂𝑛−𝑖

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?



Rod Cutting

Algorithm Plan:

?
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Algorithm Plan:
1. Initialize array to hold 
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Rod Cutting

Algorithm? Algorithm Plan:
1. Initialize array to hold 

what we care about.

2. Fill out array from 
small to large.

3. Fill out array using:
𝑂𝑛 = max

1≤𝑖≤𝑛
𝑝𝑖 + 𝑂𝑛−𝑖



Rod Cutting

partition(n, p)

 r[0,...,n] = [0,...,0]

 for m = 1 to n

  max = 0

  for length l ≤ m

   if r[m – l] + pl > max

    max = r[m – l] + pl

  r[m] = max

 return r[n]

Algorithm Plan:
1. Initialize array to hold 

what we care about.

2. Fill out array from 
small to large.

3. Fill out array using:
𝑂𝑛 = max

1≤𝑖≤𝑛
𝑝𝑖 + 𝑂𝑛−𝑖
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 return r[n]

Running Time?
 



Rod Cutting

partition(n, p)

 r[0,...,n] = [0,...,0]

 for m = 1 to n

  max = 0

  for length l ≤ m

   if r[m – l] + pl > max

    max = r[m – l] + pl

  r[m] = max

 return r[n]

Running Time?
 𝑂 𝑛2



Problem Statement

Suppose we have a graph of this form:

Goal: Find a subset of vertices such that they do not share 
any edges with each other, and the sum of their weights (𝑤𝑖) 
is maximized.

Example: 

1 8 6 3 6

1 8 6 3 6



Find counter example for this algorithm:

maxWeight1(G = (V, E))
  S = Ø
  while V ≠ Ø
   Let vi be node of max weight from V
   Add vi to S
   Delete vi and neighbors from G
  return S

Goal: Find a subset of vertices such that they 
do not share any edges with each other, and 
the sum of their weights (𝑤𝑖) is maximized.



Find counter example for this algorithm:

maxWeight1(G = (V, E))
  S = Ø
  while V ≠ Ø
   Let vi be node of max weight from V
   Add vi to S
   Delete vi and neighbors from G
  return S

2 3 2 Goal: Find a subset of vertices such that they 
do not share any edges with each other, and 
the sum of their weights (𝑤𝑖) is maximized.2 3 2



Find counter example for this algorithm:

maxWeight2(G = (V, E))
  Let S1 = vi where i is odd
  Let S2 = vi where i is even
  return maxWeight(S1, S2)

Goal: Find a subset of 
vertices such that they 
do not share any edges 
with each other, and the 
sum of their weights (𝑤𝑖) 
is maximized.



Find counter example for this algorithm:

maxWeight2(G = (V, E))
  Let S1 = vi where i is odd
  Let S2 = vi where i is even
  return maxWeight(S1, S2)

Goal: Find a subset of 
vertices such that they 
do not share any edges 
with each other, and the 
sum of their weights (𝑤𝑖) 
is maximized.

1 8 6 3 6

1 8 6 3 6

1 8 6 3 6



Make an algorithm:

Input: 𝑛 node graph, 𝐺 =  (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges 
with each other, and the sum of their weights (𝑤𝑖) is maximized.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤𝑛
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with each other, and the sum of their weights (𝑤𝑖) is maximized.
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Is there an optimal substructure? Does an optimal solution to 
𝑉𝑖−1 = 𝑣1, … , 𝑣𝑖−1  translate to an optimal solution to 𝑉𝑖 = {𝑣1, … , 𝑣𝑖}?
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Yes(ish). Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with 
vertex 𝑖 discarded), or the optimal for 𝑉𝑖−2 (with vertex 𝑖 included).
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Make an algorithm:

Input: 𝑛 node graph, 𝐺 =  (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges 
with each other, and the sum of their weights (𝑤𝑖) is maximized.

Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with vertex 𝑖 
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Make an algorithm:
Input: 𝑛 node graph, 𝐺 =  (𝑉, 𝐸), with 
vertex weights.

Output: Weight of the heaviest vertex 
subset that do not share edges.

maxWeight(G = (V, E))
  
 ?

𝐴[𝑖] – weight of the optimal 
solution for 𝑉𝑖.

𝐴[𝑖]  = max
𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖
 

Running time ∈ ?



Make an algorithm:
Input: 𝑛 node graph, 𝐺 =  (𝑉, 𝐸), with 
vertex weights.

Output: Weight of the heaviest vertex 
subset that do not share edges.

maxWeight(G = (V, E))
  A[0,...,n] = [0,w1,0,...,0]
  for i = 2,...,n
   A[i] = max(A[i – 1], A[i – 2] + wi)
  return A[n]

𝐴[𝑖] – weight of the optimal 
solution for 𝑉𝑖.

𝐴[𝑖]  = max
𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖
 

Running time ∈ 𝑂(𝑛)
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