
Dynamic Programming
CSCI 432

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9

profit = $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9 profit = $9

profit = $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

profit = $10 profit = $7

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9 profit = $4

profit = $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

profit = $10 profit = $7

Rod Cutting
length 1 2 3 4

profit $1 $5 $8 $9

profit = $9 profit = $4

profit = $9

Given a rod of length 𝑛 and a table of prices,
determine the maximum profit obtainable
by cutting the rod up and selling the pieces.

Assume there is a profit ≥ 𝟎
for each possible length.

Rod Cutting

Can we use dynamic programming?

Rod Cutting

Does the rod cutting problem have optimal substructure?

Rod Cutting

Does the rod cutting problem have optimal substructure?

I.e. Does an optimal solution to an instance
imply an optimal solution to a smaller instance?

𝑛

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Assume there is a profit ≥ 0
for each possible length.

Rod Cutting

Does the rod cutting problem have optimal substructure?

Yes! Given an optimal partition for 𝑛, every
subset of that partition must also be optimal
for its size!

𝑛

⋯

Optimal partition
for size = 𝑛 − 3

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖.

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖.

 𝑂𝑛 = ?

⋯

How can we recursively calculate 𝑂𝑛 from smaller
solutions, leveraging the optimal substructure?

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖.

 𝑂𝑛 = max
1≤𝑖≤𝑛

𝑝𝑖 + 𝑂𝑛−𝑖

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?

Rod Cutting

Algorithm Plan:

?

Rod Cutting

Algorithm Plan:
1. Initialize array to hold

what we care about.

Rod Cutting

Algorithm Plan:
1. Initialize array to hold

what we care about.

2. Fill out array from
small to large.

Rod Cutting

Algorithm Plan:
1. Initialize array to hold

what we care about.

2. Fill out array from
small to large.

3. Fill out array using:
𝑂𝑛 = max

1≤𝑖≤𝑛
𝑝𝑖 + 𝑂𝑛−𝑖

Rod Cutting

Algorithm? Algorithm Plan:
1. Initialize array to hold

what we care about.

2. Fill out array from
small to large.

3. Fill out array using:
𝑂𝑛 = max

1≤𝑖≤𝑛
𝑝𝑖 + 𝑂𝑛−𝑖

Rod Cutting

partition(n, p)

 r[0,...,n] = [0,...,0]

 for m = 1 to n

 max = 0

 for length l ≤ m

 if r[m – l] + pl > max

 max = r[m – l] + pl

 r[m] = max

 return r[n]

Algorithm Plan:
1. Initialize array to hold

what we care about.

2. Fill out array from
small to large.

3. Fill out array using:
𝑂𝑛 = max

1≤𝑖≤𝑛
𝑝𝑖 + 𝑂𝑛−𝑖

Rod Cutting

partition(n, p)

 r[0,...,n] = [0,...,0]

 for m = 1 to n

 max = 0

 for length l ≤ m

 if r[m – l] + pl > max

 max = r[m – l] + pl

 r[m] = max

 return r[n]

Running Time?

Rod Cutting

partition(n, p)

 r[0,...,n] = [0,...,0]

 for m = 1 to n

 max = 0

 for length l ≤ m

 if r[m – l] + pl > max

 max = r[m – l] + pl

 r[m] = max

 return r[n]

Running Time?
 𝑂 𝑛2

Problem Statement

Suppose we have a graph of this form:

Goal: Find a subset of vertices such that they do not share
any edges with each other, and the sum of their weights (𝑤𝑖)
is maximized.

Example:

1 8 6 3 6

1 8 6 3 6

Find counter example for this algorithm:

maxWeight1(G = (V, E))
 S = Ø
 while V ≠ Ø
 Let vi be node of max weight from V
 Add vi to S
 Delete vi and neighbors from G
 return S

Goal: Find a subset of vertices such that they
do not share any edges with each other, and
the sum of their weights (𝑤𝑖) is maximized.

Find counter example for this algorithm:

maxWeight1(G = (V, E))
 S = Ø
 while V ≠ Ø
 Let vi be node of max weight from V
 Add vi to S
 Delete vi and neighbors from G
 return S

2 3 2 Goal: Find a subset of vertices such that they
do not share any edges with each other, and
the sum of their weights (𝑤𝑖) is maximized.2 3 2

Find counter example for this algorithm:

maxWeight2(G = (V, E))
 Let S1 = vi where i is odd
 Let S2 = vi where i is even
 return maxWeight(S1, S2)

Goal: Find a subset of
vertices such that they
do not share any edges
with each other, and the
sum of their weights (𝑤𝑖)
is maximized.

Find counter example for this algorithm:

maxWeight2(G = (V, E))
 Let S1 = vi where i is odd
 Let S2 = vi where i is even
 return maxWeight(S1, S2)

Goal: Find a subset of
vertices such that they
do not share any edges
with each other, and the
sum of their weights (𝑤𝑖)
is maximized.

1 8 6 3 6

1 8 6 3 6

1 8 6 3 6

Make an algorithm:

Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (𝑤𝑖) is maximized.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤𝑛

Make an algorithm:

Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (𝑤𝑖) is maximized.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤𝑛

Is there an optimal substructure? Does an optimal solution to
𝑉𝑖−1 = 𝑣1, … , 𝑣𝑖−1 translate to an optimal solution to 𝑉𝑖 = {𝑣1, … , 𝑣𝑖}?

Make an algorithm:

Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (𝑤𝑖) is maximized.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤𝑛

Is there an optimal substructure? Does an optimal solution to
𝑉𝑖−1 = 𝑣1, … , 𝑣𝑖−1 translate to an optimal solution to 𝑉𝑖 = {𝑣1, … , 𝑣𝑖}?

Yes(ish). Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with
vertex 𝑖 discarded), or the optimal for 𝑉𝑖−2 (with vertex 𝑖 included).

Make an algorithm:

Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (𝑤𝑖) is maximized.

Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with vertex 𝑖
discarded), or the optimal for 𝑉𝑖−2 (with vertex 𝑖 included).

Let 𝑨[𝒊] be the
weight of the optimal

solution for 𝑽𝒊.

𝑨 𝒊 =?

Make an algorithm:

Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges
with each other, and the sum of their weights (𝑤𝑖) is maximized.

Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with vertex 𝑖
discarded), or the optimal for 𝑉𝑖−2 (with vertex 𝑖 included).

Let 𝐴[𝑖] be the
weight of the optimal

solution for 𝑉𝑖.
𝐴[𝑖] = max

𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖

Make an algorithm:
Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with
vertex weights.

Output: Weight of the heaviest vertex
subset that do not share edges.

maxWeight(G = (V, E))

 ?

𝐴[𝑖] – weight of the optimal
solution for 𝑉𝑖.

𝐴[𝑖] = max
𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖

Running time ∈ ?

Make an algorithm:
Input: 𝑛 node graph, 𝐺 = (𝑉, 𝐸), with
vertex weights.

Output: Weight of the heaviest vertex
subset that do not share edges.

maxWeight(G = (V, E))
 A[0,...,n] = [0,w1,0,...,0]
 for i = 2,...,n
 A[i] = max(A[i – 1], A[i – 2] + wi)
 return A[n]

𝐴[𝑖] – weight of the optimal
solution for 𝑉𝑖.

𝐴[𝑖] = max
𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖

Running time ∈ 𝑂(𝑛)

	Slide 1: Dynamic Programming CSCI 432
	Slide 2: Rod Cutting
	Slide 3: Rod Cutting
	Slide 4: Rod Cutting
	Slide 5: Rod Cutting
	Slide 6: Rod Cutting
	Slide 7: Rod Cutting
	Slide 8: Rod Cutting
	Slide 9: Rod Cutting
	Slide 10: Rod Cutting
	Slide 11: Rod Cutting
	Slide 12: Rod Cutting
	Slide 13: Rod Cutting
	Slide 14: Rod Cutting
	Slide 15: Rod Cutting
	Slide 16: Rod Cutting
	Slide 17: Rod Cutting
	Slide 18: Rod Cutting
	Slide 19: Rod Cutting
	Slide 20: Rod Cutting
	Slide 21: Rod Cutting
	Slide 22: Rod Cutting
	Slide 23: Problem Statement
	Slide 24: Find counter example for this algorithm:
	Slide 25: Find counter example for this algorithm:
	Slide 26: Find counter example for this algorithm:
	Slide 27: Find counter example for this algorithm:
	Slide 28: Make an algorithm:
	Slide 29: Make an algorithm:
	Slide 30: Make an algorithm:
	Slide 31: Make an algorithm:
	Slide 32: Make an algorithm:
	Slide 33: Make an algorithm:
	Slide 34: Make an algorithm:

