
Greedy Algorithms
CSCI 432

Greedy Algorithms:

• Characterize structure of
optimal solution.

• Recursively define value of
optimal solution.

• Compute value of optimal
solution.

• Construct optimal solution
from computed information.

Dynamic Programming:

Greedy Algorithms:

• Characterize structure of
optimal solution.

• Recursively define value of
optimal solution.

• Compute value of optimal
solution.

• Construct optimal solution
from computed information.

Dynamic Programming: • Make the choice that best helps
some objective.

• Do not look ahead, plan, or
revisit past decisions.

• Hope that optimal local choices
lead to optimal global solutions.

Greedy:

Greedy Algorithms:

• Characterize structure of
optimal solution.

• Recursively define value of
optimal solution.

• Compute value of optimal
solution.

• Construct optimal solution
from computed information.

Dynamic Programming: • Make the choice that best helps
some objective.

• Do not look ahead, plan, or
revisit past decisions.

• Hope that optimal local choices
lead to optimal global solutions.

Greedy:

Greedy algorithm for:

• Robbing a jewelry store?

• Eating at a fancy buffet?

Single Room Scheduling

Goal: Assign courses to a single classroom.

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Single Room Scheduling

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

I.e., Fill a single room up with
the most possible courses.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

𝑖 1 2 3 4 5

𝑠𝑖 1 3 4 5 7

𝑓𝑖 3 5 6 7 9
𝒄𝟏

𝒄𝟐

𝒄𝟒

𝒄𝟑 𝒄𝟓

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

𝑖 1 2 3 4 5

𝑠𝑖 1 3 4 5 7

𝑓𝑖 3 5 6 7 9
𝒄𝟏

𝒄𝟐

𝒄𝟒

𝒄𝟑 𝒄𝟓

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

𝑖 1 2 3 4 5

𝑠𝑖 1 3 4 5 7

𝑓𝑖 3 5 6 7 9
𝒄𝟏

𝒄𝟐

𝒄𝟒

𝒄𝟑 𝒄𝟓

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
𝑖 1 2 3 4 5

𝑠𝑖 1 3 4 5 7

𝑓𝑖 3 5 6 7 9

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest conflict first.

In each iteration, pick the course
that overlaps with the smallest
number of other courses.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest conflict first.2 4

4

4

4

4

4

3 4 4 3

In each iteration, pick the course
that overlaps with the smallest
number of other courses.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest duration first.

In each iteration, pick the course
that takes the least amount of
time.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Smallest duration first.

In each iteration, pick the course
that takes the least amount of
time.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling

Input:
• 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑛 – set of courses that need rooms.
• 𝑐𝑖 = [𝑠𝑖 , 𝑓𝑖) – start and finish times for each course.

Rules:
• 𝑐𝑖 and 𝑐𝑗 are compatible if 𝑠𝑖 , 𝑓𝑖 and 𝑠𝑗 , 𝑓𝑗 do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?
Earliest compatible finish.

In each iteration, pick the course
that ends earliest and is compatible
with existing schedule.

Single Room Scheduling Coding Plan?

Single Room Scheduling

𝑖 1 2 3 4 5

𝑠𝑖 1 3 4 5 7

𝑓𝑖 3 5 6 7 9

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Test to see if C[i] is compatible
with courses already selected?

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 if C[i].start ≥ C[last_added].finish

 selected.add(C[i])

 last_added = i

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 if C[i].start ≥ C[last_added].finish

 selected.add(C[i])

 last_added = i

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Running Time?

Validity?

Performance?

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 if C[i].start ≥ C[last_added].finish

 selected.add(C[i])

 last_added = i

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Running Time? 𝑂 𝑛 log 𝑛

Validity?

Performance?

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 if C[i].start ≥ C[last_added].finish

 selected.add(C[i])

 last_added = i

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Running Time? 𝑂 𝑛 log 𝑛

Validity? selected consists of
compatible courses.

Performance?

Single Room Scheduling

room_scheduling(courses C)

 C.sort_by_finish()

 selected = {C[1]}

 last_added = 1

 for i = 2 to C.length

 if C[i].start ≥ C[last_added].finish

 selected.add(C[i])

 last_added = i

 return selected

Coding Plan?
1. Sort by increasing finish

times.
2. Select first course.
3. Iterate through list looking

for first compatible course.
4. Repeat.

Running Time? 𝑂 𝑛 log 𝑛

Validity? selected consists of
compatible courses.

Performance? Is selected the
largest possible subset?

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

𝑺𝑶𝑷𝑻:
𝑺𝑨𝑳𝑮:

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Suppose 𝑺𝑨𝑳𝑮 and 𝑺𝑶𝑷𝑻 schedule the
same courses up until course 𝒌.

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

𝑺𝑶𝑷𝑻:
𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑗

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

Plan: Turn a hypothetical optimal solution into the
algorithm’s solution without changing the cost (i.e., number
of courses) and without violating course compatibility.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

Will 𝑆𝑂𝑃𝑇
′ be valid?

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

Will 𝑆𝑂𝑃𝑇
′ be valid?

Need to check and see if 𝑐𝑗

messed up any compatibilities.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘

𝒄𝒊 is compatible with 𝑺𝑨𝑳𝑮, and 𝑺𝑶𝑷𝑻 and
𝑺𝑶𝑷𝑻

′ share the same courses before 𝒄𝒊.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘

𝑐𝑖 is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′ since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy

algorithm would have selected 𝑐𝑗 instead of 𝑐𝑖.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

𝑐𝑗

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘

𝑐𝑖 is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′ since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy

algorithm would have selected 𝑐𝑗 instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′ is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′ is also optimal.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮:

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘

𝑐𝑖 is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′ since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy

algorithm would have selected 𝑐𝑗 instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′ is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′ is also optimal.

We can then proceed inductively and show that each course in 𝑆𝑂𝑃𝑇 can be replaced by the
corresponding course in 𝑆𝐴𝐿𝐺 without violating compatibility.

Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection,
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time.

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘 for 𝑆𝑂𝑃𝑇 𝑘)

𝑐𝑖 is compatible with previous courses in 𝑆𝑂𝑃𝑇
′ since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘

𝑐𝑖 is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′ since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy

algorithm would have selected 𝑐𝑗 instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′ is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′ is also optimal.

We can then proceed inductively and show that each course in 𝑆𝑂𝑃𝑇 can be replaced by the
corresponding course in 𝑆𝐴𝐿𝐺 without violating compatibility. Since replacing every course in
𝑆𝑂𝑃𝑇 with the courses in 𝑆𝐴𝐿𝐺 keeps the solution optimal, 𝑆𝐴𝐿𝐺 must be optimal. (i.e., we
translated 𝑆𝑂𝑃𝑇 into 𝑆𝐴𝐿𝐺 at no extra cost).

	Slide 1: Greedy Algorithms CSCI 432
	Slide 2: Greedy Algorithms:
	Slide 3: Greedy Algorithms:
	Slide 4: Greedy Algorithms:
	Slide 5: Single Room Scheduling
	Slide 6: Single Room Scheduling
	Slide 7: Single Room Scheduling
	Slide 8: Single Room Scheduling
	Slide 9: Single Room Scheduling
	Slide 10: Single Room Scheduling
	Slide 11: Single Room Scheduling
	Slide 12: Single Room Scheduling
	Slide 13: Single Room Scheduling
	Slide 14: Single Room Scheduling
	Slide 15: Single Room Scheduling
	Slide 16: Single Room Scheduling
	Slide 17: Single Room Scheduling
	Slide 18: Single Room Scheduling
	Slide 19: Single Room Scheduling
	Slide 20: Single Room Scheduling
	Slide 21: Single Room Scheduling
	Slide 22: Single Room Scheduling
	Slide 23: Single Room Scheduling
	Slide 24: Single Room Scheduling
	Slide 25: Single Room Scheduling
	Slide 26: Single Room Scheduling
	Slide 27: Single Room Scheduling
	Slide 28: Single Room Scheduling
	Slide 29: Single Room Scheduling
	Slide 30: Single Room Scheduling
	Slide 31: Single Room Scheduling
	Slide 32: Single Room Scheduling
	Slide 33: Single Room Scheduling
	Slide 34: Single Room Scheduling
	Slide 35: Single Room Scheduling
	Slide 36: Single Room Scheduling
	Slide 37: Single Room Scheduling
	Slide 38: Single Room Scheduling
	Slide 39: Single Room Scheduling
	Slide 40: Single Room Scheduling
	Slide 41: Single Room Scheduling
	Slide 42: Single Room Scheduling
	Slide 43: Single Room Scheduling
	Slide 44: Single Room Scheduling
	Slide 45: Single Room Scheduling
	Slide 46: Single Room Scheduling

