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Greedy algorithm for:

• Robbing a jewelry store?

• Eating at a fancy buffet?



Single Room Scheduling

Goal: Assign courses to a single classroom.
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with courses already selected?



Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected

Coding Plan?
1. Sort by increasing finish 

times.
2. Select first course.
3. Iterate through list looking 

for first compatible course.
4. Repeat.



Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected

Coding Plan?
1. Sort by increasing finish 

times.
2. Select first course.
3. Iterate through list looking 

for first compatible course.
4. Repeat.

Running Time?  

Validity?  

Performance?  



Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected

Coding Plan?
1. Sort by increasing finish 

times.
2. Select first course.
3. Iterate through list looking 

for first compatible course.
4. Repeat.

Running Time?  𝑂 𝑛 log 𝑛

Validity?  

Performance?  



Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected

Coding Plan?
1. Sort by increasing finish 

times.
2. Select first course.
3. Iterate through list looking 

for first compatible course.
4. Repeat.

Running Time?  𝑂 𝑛 log 𝑛

Validity?  selected consists of 
compatible courses.

Performance?  



Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected

Coding Plan?
1. Sort by increasing finish 

times.
2. Select first course.
3. Iterate through list looking 

for first compatible course.
4. Repeat.

Running Time?  𝑂 𝑛 log 𝑛

Validity?  selected consists of 
compatible courses.

Performance?  Is selected the 
largest possible subset?



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

Plan: Turn a hypothetical optimal solution into the 
algorithm’s solution without changing the cost (i.e., number 
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Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘 

𝒄𝒊 is compatible with 𝑺𝑨𝑳𝑮, and 𝑺𝑶𝑷𝑻 and 
𝑺𝑶𝑷𝑻

′  share the same courses before 𝒄𝒊. 

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘 

𝑐𝑖  is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′  since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy 

algorithm would have selected 𝑐𝑗  instead of 𝑐𝑖.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮: 𝑐𝑖

𝑐𝑖

𝑐𝑗



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘 

𝑐𝑖  is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′  since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy 

algorithm would have selected 𝑐𝑗  instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′  is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′  is also optimal.

𝑺𝑶𝑷𝑻
′ :

𝑺𝑨𝑳𝑮:



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘 

𝑐𝑖  is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′  since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy 

algorithm would have selected 𝑐𝑗  instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′  is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′  is also optimal.

We can then proceed inductively and show that each course in 𝑆𝑂𝑃𝑇 can be replaced by the 
corresponding course in 𝑆𝐴𝐿𝐺  without violating compatibility. 



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 ≤ 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 ≤ 𝑘 

𝑐𝑖  is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′  since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy 

algorithm would have selected 𝑐𝑗  instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′  is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′  is also optimal.

We can then proceed inductively and show that each course in 𝑆𝑂𝑃𝑇 can be replaced by the 
corresponding course in 𝑆𝐴𝐿𝐺  without violating compatibility. Since replacing every course in 
𝑆𝑂𝑃𝑇 with the courses in 𝑆𝐴𝐿𝐺  keeps the solution optimal, 𝑆𝐴𝐿𝐺  must be optimal. (i.e., we 
translated 𝑆𝑂𝑃𝑇 into 𝑆𝐴𝐿𝐺  at no extra cost).
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