Greedy Algorithms CSCI 432

Greedy Algorithms:

Dynamic Programming:

- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Greedy Algorithms:

Dynamic Programming:

- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Greedy:

- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Dynamic Programming:

- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Greedy:

- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.

Greedy algorithm for:

- Robbing a jewelry store?
- Eating at a fancy buffet?

Goal: Assign courses to a single classroom.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

I.e., Fill a single room up with the most possible courses.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

i	1	2	3	4	5
Si	1	3	4	5	7
f_i	3	5	6	7	9

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

i	1	2	3	4	5
Si	1	3	4	5	7
f_i	3	5	6	7	9

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria?

i	1	2	3	4	5
s _i	1	3	4	5	7
f_i	3	5	6	7	9

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Smallest conflict first.

In each iteration, pick the course that overlaps with the smallest number of other courses.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Smallest conflict first.

In each iteration, pick the course that overlaps with the smallest number of other courses.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Smallest duration first.

In each iteration, pick the course that takes the least amount of time.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Smallest duration first.

In each iteration, pick the course that takes the least amount of time.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Input:

- $C = \{c_1, c_2, \dots, c_n\}$ set of courses that need rooms.
- $c_i = [s_i, f_i)$ start and finish times for each course.

Rules:

• c_i and c_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.

Goal: Select a maximum sized subset of compatible courses.

Greedy selection criteria? Earliest compatible finish.

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

4. Repeat.

room_scheduling(courses C)

C.sort_by_finish()

selected = $\{C[1]\}$

 $last_added = 1$

for i = 2 to C.length

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

4. Repeat.

return selected

room_scheduling(courses C)

- C.sort_by_finish()
- selected = $\{C[1]\}$
- $last_added = 1$
- for i = 2 to C.length

Test to see if C[i] is compatible with courses already selected?

return selected

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

4. Repeat.

```
room_scheduling(courses C)
```

```
C.sort_by_finish()
```

```
selected = \{C[1]\}
```

```
last_added = 1
```

```
for i = 2 to C.length
```

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

```
4. Repeat.
```

```
if C[i].start ≥ C[last_added].finish
    selected.add(C[i])
    last_added = i
return selected
```

```
room_scheduling(courses C)
```

```
C.sort_by_finish()
selected = {C[1]}
```

```
Selected = \{C[I]\}
```

```
last_added = 1
```

```
for i = 2 to C.length
```

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.
- 4. Repeat.

```
if C[i].start ≥ C[last_added].finish
    selected.add(C[i])
        Running Time?
    last_added = i
        Validity?
return selected
```

```
times.
room_scheduling(courses C)
                                           2. Select first course.
  C.sort_by_finish()
                                           3. Iterate through list looking
  selected = \{C[1]\}
                                             for first compatible course.
  last_added = 1
                                           4. Repeat.
  for i = 2 to C.length
     if C[i].start ≥ C[last_added].finish
        selected.add(C[i])
                                             Running Time? O(n \log n)
        last_added = i
                                             Validity?
  return selected
```

Coding Plan?

1. Sort by increasing finish

```
room_scheduling(courses C)
```

```
C.sort_by_finish()
```

```
selected = \{C[1]\}
```

```
last_added = 1
```

```
for i = 2 to C.length
```

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

```
4. Repeat.
```

```
if C[i].start ≥ C[last_added].finish
    selected.add(C[i]) Running Time? O(n log n)
    last_added = i Validity? selected consists of
    return selected consists of
    compatible courses.
```

```
room_scheduling(courses C)
```

```
C.sort_by_finish()
```

```
selected = \{C[1]\}
```

```
last_added = 1
```

```
for i = 2 to C.length
```

Coding Plan?

- 1. Sort by increasing finish times.
- 2. Select first course.
- 3. Iterate through list looking for first compatible course.

4. Repeat.

```
if C[i].start ≥ C[last_added].finish
     selected.add(C[i])
                                        Running Time? O(n \log n)
     last_added = i
return selected
```

Validity? selected consists of compatible courses.

Performance? Is selected the largest possible subset?

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

Proof of optimality:

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let C be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time.

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let C be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time.

Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \le k$ and $S_{ALG}[k] = c_i \ne c_j = S_{OPT}[k]$.

Suppose S_{ALG} and S_{OPT} schedule the same courses up until course k.

1	
1	

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_i\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$)

1	

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let C be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time.

Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \le k$ and $S_{ALG}[k] = c_i \ne c_j = S_{OPT}[k]$.

Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_i\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$)

Will S'_{OPT} be valid?

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_i = S_{OPT}[k]$.

Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_i\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$)

Will S'_{OPT} be valid? Need to check and see if c_j messed up any compatibilities.

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

Proof of optimality: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all $i \leq k$

 c_i is compatible with S_{ALG} , and S_{OPT} and S'_{OPT} share the same courses before c_i .

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

Proof of optimality: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all $i \leq k$ c_i is compatible with subsequent courses in S'_{OPT} since $f_i \leq f_j$. Otherwise, the greedy

algorithm would have selected c_i instead of c_i .

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all $i \leq k$ c_i is compatible with subsequent courses in S'_{OPT} since $f_i \leq f_j$. Otherwise, the greedy algorithm would have selected c_i instead of c_i .

So S'_{OPT} is a valid schedule with the same number of courses as S_{OPT} , so S'_{OPT} is also optimal.

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all $i \leq k$ c_i is compatible with subsequent courses in S'_{OPT} since $f_i \leq f_j$. Otherwise, the greedy algorithm would have selected c_i instead of c_i .

So S'_{OPT} is a valid schedule with the same number of courses as S_{OPT} , so S'_{OPT} is also optimal. We can then proceed inductively and show that each course in S_{OPT} can be replaced by the corresponding course in S_{ALG} without violating compatibility.

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all $i \leq k$ and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all $i \leq k$ c_i is compatible with subsequent courses in S'_{OPT} since $f_i \leq f_i$. Otherwise, the greedy

algorithm would have selected c_i instead of c_i .

So S'_{OPT} is a valid schedule with the same number of courses as S_{OPT} , so S'_{OPT} is also optimal. We can then proceed inductively and show that each course in S_{OPT} can be replaced by the corresponding course in S_{ALG} without violating compatibility. Since replacing every course in S_{OPT} with the courses in S_{ALG} keeps the solution optimal, S_{ALG} must be optimal. (i.e., we translated S_{OPT} into S_{ALG} at no extra cost).