
Greedy Algorithms
CSCI 432

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality:

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

What can we say about 𝑞𝐴𝐿𝐺 vs 𝑞𝑂𝑃𝑇?

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.

Why is this a problem?
Contradict the fact that 𝑇𝑂𝑃𝑇 is optimal.

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇

Technically we don’t know if there are enough dimes
and nickels for this, but if there are not, then it will
require even more coins to account for the 25-cents.

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ 𝑉 = 25(𝑞𝑂𝑃𝑇 + 1) + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ 𝑉 = 25(𝑞𝑂𝑃𝑇 + 1) + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ Num coins = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 – 2

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ 𝑉 = 25(𝑞𝑂𝑃𝑇 + 1) + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ Num coins = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 – 2 < 𝑇𝑂𝑃𝑇. Contradiction.
 Thus, 𝑞𝑂𝑃𝑇 = 𝑞𝐴𝐿𝐺 .

Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes,
nickels, and pennies used.

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺 be the algorithm’s solution and
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺 since 𝑞𝐴𝐿𝐺 is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25.
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
 = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ 𝑉 = 25(𝑞𝑂𝑃𝑇 + 1) + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ Num coins = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 – 2 < 𝑇𝑂𝑃𝑇. Contradiction.
 Thus, 𝑞𝑂𝑃𝑇 = 𝑞𝐴𝐿𝐺 .

Repeat argument to show that 𝑑𝑂𝑃𝑇 = 𝑑𝐴𝐿𝐺 , 𝑛𝑂𝑃𝑇 = 𝑛𝐴𝐿𝐺 , and 𝑝𝑂𝑃𝑇 = 𝑝𝐴𝐿𝐺 . Thus,
𝑇𝑂𝑃𝑇 = 𝑇𝐴𝐿𝐺 and 𝑇𝐴𝐿𝐺 is optimal.

Problem Statement

Suppose you are going on a long backpacking trip on some trail. You can
hike up to 𝑚 miles a day. There are designated campsites along the trail
at miles (𝑐1, 𝑐2, … , 𝑐𝑛). You need to stay in a designated campsite each
night. Your goal is to hike the whole trail in as few days as possible.

𝒎 = 𝟖

𝒎 = 𝟖𝒄𝟏 = 𝟑

Problem Statement

Suppose you are going on a long backpacking trip on some trail. You can
hike up to 𝑚 miles a day. There are designated campsites along the trail
at miles (𝑐1, 𝑐2, … , 𝑐𝑛). You need to stay in a designated campsite each
night. Your goal is to hike the whole trail in as few days as possible.

𝒎 = 𝟖

𝒎 = 𝟖

Come up with a greedy algorithm that will provide a valid
solution (i.e. don’t worry about it being optimal right now).

Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the
last reachable (i.e. < 𝑚) campsite each day.

𝒎 = 𝟖

Is GCS valid?

Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

??

Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

 if lastSpot + m < C[i]

 selected.add(C[i – 1])

 lastSpot = C[i – 1]

 return selected

Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

 if lastSpot + m < C[i]

 selected.add(C[i – 1])

 lastSpot = C[i – 1]

 return selected

Running time?

Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

 if lastSpot + m < C[i]

 selected.add(C[i – 1])

 lastSpot = C[i – 1]

 return selected

Running time?
𝑛 = 𝐶
𝑂 𝑛 log 𝑛 - If sorting needed
𝑂(𝑛) - If sorting not needed

Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the
last reachable (i.e. < 𝑚) campsite each day.

Will this ever not be optimal? Does it ever make sense to end
the day early, to help with campsite spacing on a future day?

vs

Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Plan?

Greedy Algorithm
Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Prove this by arguing that you can swap 𝑺𝑨𝑳𝑮 campsites
into 𝑺𝑶𝑷𝑻 and keep 𝑺𝑶𝑷𝑻 both valid and optimal.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in

𝑆𝐴𝐿𝐺 and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in

𝑆𝐴𝐿𝐺 and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

. Likewise, 𝑐𝑎𝑖
 will also work for 𝑐𝑜𝑖+1

 since 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

, so if

𝑐𝑜𝑖+1
− 𝑐𝑜𝑖

≤ 𝑚 then 𝑐𝑜𝑖+1
− 𝑐𝑎𝑖

≤ 𝑚 too.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in

𝑆𝐴𝐿𝐺 and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

. Likewise, 𝑐𝑎𝑖
 will also work for 𝑐𝑜𝑖+1

 since 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

, so if

𝑐𝑜𝑖+1
− 𝑐𝑜𝑖

≤ 𝑚 then 𝑐𝑜𝑖+1
− 𝑐𝑎𝑖

≤ 𝑚 too.

So 𝑺𝑶𝑷𝑻
′ is valid (doesn’t exceed 𝒎-distance restriction)

and has the same number of sites as 𝑺𝑶𝑷𝑻, so it’s optimal.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in

𝑆𝐴𝐿𝐺 and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

. Likewise, 𝑐𝑎𝑖
 will also work for 𝑐𝑜𝑖+1

 since 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

, so if

𝑐𝑜𝑖+1
− 𝑐𝑜𝑖

≤ 𝑚 then 𝑐𝑜𝑖+1
− 𝑐𝑎𝑖

≤ 𝑚 too.

We can repeat this by replacing campsites in 𝑆𝑂𝑃𝑇 with the corresponding site in
𝑆𝐴𝐿𝐺 without exceeding the 𝑚-restriction or increasing the number of sites.

Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺 and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
.

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in

𝑆𝐴𝐿𝐺 and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

. Likewise, 𝑐𝑎𝑖
 will also work for 𝑐𝑜𝑖+1

 since 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

, so if

𝑐𝑜𝑖+1
− 𝑐𝑜𝑖

≤ 𝑚 then 𝑐𝑜𝑖+1
− 𝑐𝑎𝑖

≤ 𝑚 too.

We can repeat this by replacing campsites in 𝑆𝑂𝑃𝑇 with the corresponding site in
𝑆𝐴𝐿𝐺 without exceeding the 𝑚-restriction or increasing the number of sites.

Thus, 𝑆𝐴𝐿𝐺 is optimal.

	Slide 1: Greedy Algorithms CSCI 432
	Slide 2: Greedy Change Making (USD)
	Slide 3: Greedy Change Making (USD)
	Slide 4: Greedy Change Making (USD)
	Slide 5: Greedy Change Making (USD)
	Slide 6: Greedy Change Making (USD)
	Slide 7: Greedy Change Making (USD)
	Slide 8: Greedy Change Making (USD)
	Slide 9: Greedy Change Making (USD)
	Slide 10: Greedy Change Making (USD)
	Slide 11: Greedy Change Making (USD)
	Slide 12: Greedy Change Making (USD)
	Slide 13: Greedy Change Making (USD)
	Slide 14: Greedy Change Making (USD)
	Slide 15: Problem Statement
	Slide 16: Problem Statement
	Slide 17: Greedy Algorithm
	Slide 18: Greedy Algorithm
	Slide 19: Greedy Algorithm
	Slide 20: Greedy Algorithm
	Slide 21: Greedy Algorithm
	Slide 22: Greedy Algorithm
	Slide 23
	Slide 24
	Slide 25: Greedy Algorithm
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

