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Why is this a problem?
Contradict the fact that 𝑇𝑂𝑃𝑇 is optimal.  
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Technically we don’t know if there are enough dimes 
and nickels for this, but if there are not, then it will 
require even more coins to account for the 25-cents.
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Problem Statement

Suppose you are going on a long backpacking trip on some trail. You can 
hike up to 𝑚 miles a day. There are designated campsites along the trail 
at miles (𝑐1, 𝑐2, … , 𝑐𝑛). You need to stay in a designated campsite each 
night. Your goal is to hike the whole trail in as few days as possible. 
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Come up with a greedy algorithm that will provide a valid 
solution (i.e. don’t worry about it being optimal right now).



Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the 
last reachable (i.e. < 𝑚) campsite each day.

𝒎 = 𝟖

Is GCS valid?
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campsite_selection(campsites C, maxDistance m)

??
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 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

  if lastSpot + m < C[i]

   selected.add(C[i – 1])

   lastSpot = C[i – 1]

 return selected



Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

  if lastSpot + m < C[i]

   selected.add(C[i – 1])

   lastSpot = C[i – 1]

 return selected

Running time?



Greedy Algorithm

campsite_selection(campsites C, maxDistance m)

 C.sort() //if needed

 lastSpot = 0

 for i = 1 to C.length

  if lastSpot + m < C[i]

   selected.add(C[i – 1])

   lastSpot = C[i – 1]
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Running time?
𝑛 = 𝐶
𝑂 𝑛 log 𝑛  - If sorting needed
𝑂(𝑛) - If sorting not needed



Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the 
last reachable (i.e. < 𝑚) campsite each day.

Will this ever not be optimal? Does it ever make sense to end 
the day early, to help with campsite spacing on a future day?

vs



Theorem: Camping at the last reachable campsite each day is optimal.

Proof:



Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Plan?
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Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Prove this by arguing that you can swap 𝑺𝑨𝑳𝑮 campsites 
into 𝑺𝑶𝑷𝑻 and keep 𝑺𝑶𝑷𝑻 both valid and optimal.
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, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and 

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.
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) be the campsites chosen by GCS and 

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
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