Test 1 Review CSCI 432

Test 1 Logistics

- 1. During class on Thursday 2/13.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Identify optimal substructure equation (5 points).
 - 2) Write pseudocode for provided algorithm (3 points).
 - 3) Argue validity of provided algorithm (2 points).
 - 4) Argue optimality of provided algorithm (5 points).

Test 1 Logistics

- 1. During class on Thursday 2/13.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Identify optimal substructure equation (5 points).
 - 2) Write pseudocode for provided algorithm (3 points).
 - 3) Argue validity of provided algorithm (2 points).
 - 4) Argue optimality of provided algorithm (5 points).

In general, suppose a country has denominations:

Making Change

(US coins: $d_1 = 1, d_2 = 5, d_3 = 10, d_4 = 25$)

 $1 = d_1 < d_2 < \cdots < d_k$

- C(p) minimum number of coins to make p cents.
- x value (e.g. \$0.25) of a coin used in the optimal solution.

Rod Cutting length 1 2 3 4 ... n profit \$1 \$5 \$8 \$9 ... \$?

 O_n = optimal profit from partitioning rod of length n. p_i = profit for rod of length i.

$$O_n = \max_{1 \le i \le n} (p_i + O_{n-i})$$

Weighted Graph Problem

Input: n node graph, G = (V, E), with vertex weights.

Output: Subset of vertices such that they do not share any edges with each other, and the sum of their weights (w_i) is maximized.

Optimal solution to V_i is either the optimal for V_{i-1} (with vertex *i* discarded), or the optimal for V_{i-2} (with vertex *i* included).

Let A[i] be the weight of the optimal A[i]solution for V_i .

$$A[i] = \max \begin{pmatrix} A[i - 1] \\ A[i - 2] + w_i \end{pmatrix}$$

Edit Distance

We want to align two strings, $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_m]$. $E(i, j) = \text{optimal cost of aligning } [x_1, ..., x_i]$ and $[y_1, ..., y_j]$.

Can we say anything about optimal alignment of $[x_1, ..., x_i]$ and $[y_1, ..., y_j]$?

Alignment	Cost	$\left(\operatorname{diff}(i \ i) + F(i - 1 \ i - 1)\right)$
$egin{array}{c} x_i \ y_j \end{array}$	$\{0,1\} + E(i-1,j-1)$	$E(i,j) = \min \begin{cases} \dim(i,j) + E(i-1,j) \\ 1 + E(i-1,j) \\ 1 + E(i,j-1) \end{cases}$
$\frac{x_i}{-}$	1 + E(i - 1, j)	$\begin{pmatrix} 1 + L(t, j - 1) \\ (0) \end{pmatrix}$
- y_j	1 + E(i, j - 1)	where diff $(i,j) = \begin{cases} 0, & x_i = y_j \\ 1, & x_i \neq y_j \end{cases}$

Matrix-Chain Multiplication

Input: *n* matrices $M_1, M_2, ..., M_n$ with dimensions of: $m_0 \times m_1, m_1 \times m_2, ..., m_{n-1} \times m_n$

Output: Minimum number of scalar multiplications needed to calculate $M_1 \times M_2 \times \cdots \times M_n$.

Let C[i, j] = Minimum number of scalar multiplications needed for multiplying $M_i \times M_{i+1} \times \cdots \times M_j$

Suppose the final multiplication in the optimal solution occurs at k:

$$(M_i \times \cdots \times M_k) (M_{k+1} \times \cdots \times M_j)$$

$$C[i,j] = \min_{i \le k < j} (C[i,k] + C[k+1,j] + m_k \times m_{i-1} \times m_j)$$

Test 1 Logistics

- 1. During class on Thursday 2/13.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Identify optimal substructure equation (5 points).
 - 2) Write pseudocode for provided algorithm (3 points).
 - 3) Argue validity of provided algorithm (2 points).
 - 4) Argue optimality of provided algorithm (5 points).

Single Room Scheduling

```
room_scheduling(courses C)
  C.sort_by_finish()
  selected = \{C[1]\}
  last_added = 1
  for i = 2 to C.length
     if C[i].start > C[last_added].finish
       selected.add(C[i])
       last_added = i
  return selected
```

Test 1 Logistics

- 1. During class on Thursday 2/13.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Identify optimal substructure equation (5 points).
 - 2) Write pseudocode for provided algorithm (3 points).
 - 3) Argue validity of provided algorithm (2 points).
 - 4) Argue optimality of provided algorithm (5 points).

Test 1 Logistics

- 1. During class on Thursday 2/13.
- 2. You can bring your book and any notes you would like, but no electronic devices.
- 3. You may assume anything proven in class or on homework.
- 4. Four questions (15 points):
 - 1) Identify optimal substructure equation (5 points).
 - 2) Write pseudocode for provided algorithm (3 points).
 - 3) Argue validity of provided algorithm (2 points).
 - 4) Argue optimality of provided algorithm (5 points).

Problem Statement

Suppose you are going on a long backpacking trip on some trail. You can hike up to m miles a day. There are designated campsites along the trail at miles $(c_1, c_2, ..., c_n)$. You need to stay in a designated campsite each night. Your goal is to hike the whole trail in as few days as possible.

Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the last reachable (i.e. < m) campsite each day.

Greedy Algorithm

Theorem: Camping at the last reachable campsite each day is optimal. Proof:

Prove this by arguing that you can swap S_{ALG} campsites into S_{OPT} and keep S_{OPT} both valid and optimal.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

Suppose night *i* is the first night that S_{ALG} and S_{OPT} do not stop at the same site. Consider $S'_{OPT} = S_{OPT} \setminus \{c_{o_i}\} \cup \{c_{a_i}\}$.

 c_{a_i} will not require S_{OPT} to go farther than m on day i, since it worked in S_{ALG} and $c_{a_{i-1}} = c_{o_{i-1}}$. Likewise, c_{a_i} will also work for $c_{o_{i+1}}$ since $c_{o_i} \leq c_{a_i}$, so if $c_{o_{i+1}} - c_{o_i} \leq m$ then $c_{o_{i+1}} - c_{a_i} \leq m$ too.

We can repeat this by replacing campsites in S_{OPT} with the corresponding site in S_{ALG} without exceeding the *m*-restriction or increasing the number of sites. Thus, S_{ALG} is optimal.

Single Room Scheduling

<u>Greedy decision:</u> Select the next course with the earliest compatible finish time.

<u>Proof of optimality</u>: Let *C* be the set of courses, $S_{ALG} \subseteq C$ be the greedy algorithm's selection, and $S_{OPT} \subseteq C$ be an optimal selection, all sorted by increasing finish time. Suppose $S_{ALG}[i] = S_{OPT}[i]$, for all i < k and $S_{ALG}[k] = c_i \neq c_j = S_{OPT}[k]$. Create the revised schedule $S'_{OPT} = S_{OPT} \setminus \{c_j\} \cup \{c_i\}$. (I.e., Swap $S_{ALG}[k]$ for $S_{OPT}[k]$) c_i is compatible with previous courses in S'_{OPT} since $S_{ALG}[i] = S_{OPT}[i] = S'_{OPT}[i]$, for all i < k c_i is compatible with subsequent courses in S'_{OPT} since $f_i \leq f_i$. Otherwise, the greedy

algorithm would have selected c_i instead of c_i .

So S'_{OPT} is a valid schedule with the same number of courses as S_{OPT} , so S'_{OPT} is also optimal. We can then proceed inductively and show that each course in S_{OPT} can be replaced by the corresponding course in S_{ALG} without violating compatibility. Since replacing every course in S_{OPT} with the courses in S_{ALG} keeps the solution optimal, S_{ALG} must be optimal. (i.e., we translated S_{OPT} into S_{ALG} at no extra cost).

Greedy Change Making (USD)

<u>Greedy decision</u>: Select the highest denomination coin that evenly subtracts from the remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

<u>Proof of optimality</u>: Let V =\$ value. Let q, d, n, p be the number of quarters, dimes, nickels, and pennies used.

Let $T_{ALG} = q_{ALG} + d_{ALG} + n_{ALG} + p_{ALG}$ be the algorithm's solution and $T_{OPT} = q_{OPT} + d_{OPT} + n_{OPT} + p_{OPT}$ be an optimal solution. $q_{OPT} \leq q_{ALG}$ since q_{ALG} is the largest value such that $V - 25 q_{ALG} < 25$ If $q_{OPT} < q_{ALG}$, $V - 25 q_{OPT} \ge 25$. I.e. $V - 25 q_{OPT} = 10 d_{OPT} + 5 n_{OPT} + p_{OPT}$ $= 25 + 10(d_{OPT} - 2) + 5(n_{OPT} - 1) + p_{OPT}$ $\Rightarrow V = 25(q_{OPT} + 1) + 10(d_{OPT} - 2) + 5(n_{OPT} - 1) + p_{OPT}$ $\Rightarrow \text{Num coins} = q_{OPT} + d_{OPT} + n_{OPT} + p_{OPT} - 2 < T_{OPT}$. Contradiction. Thus, $q_{OPT} = q_{ALG}$.

Repeat argument to show that $d_{OPT} = d_{ALG}$, $n_{OPT} = n_{ALG}$, and $p_{OPT} = p_{ALG}$. Thus, $T_{OPT} = T_{ALG}$ and T_{ALG} is optimal.

1. ?

- 1. Consider the output from the algorithm.
- 2. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. Go to where OPT and ALG disagree.
- 4. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. Go to where OPT and ALG disagree.
- 4. Put ALG's choice into OPT and show:
 - a. ?
 - b. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. Go to where OPT and ALG disagree.
- 4. Put ALG's choice into OPT and show:
 - a. The result is still valid.
 - b. The cost is the same.
- 5. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. Go to where OPT and ALG disagree.
- 4. Put ALG's choice into OPT and show:
 - a. The result is still valid.
 - b. The cost is the same.
- 5. Repeat for all other disagreements.

6. ?

- 1. Consider the output from the algorithm.
- 2. Consider an optimal solution.
- 3. Go to where OPT and ALG disagree.
- 4. Put ALG's choice into OPT and show:
 - a. The result is still valid.
 - b. The cost is the same.
- 5. Repeat for all other disagreements.
- 6. Implies ALG = OPT.

Greedy Algorithm

Theorem: Camping at the last reachable campsite each day is optimal. Proof:

Prove this by arguing that you can swap S_{ALG} campsites into S_{OPT} and keep S_{OPT} both valid and optimal.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

Prove this by arguing that $c_{o_i} \leq c_{a_i}$ for every single night *i*.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \leq c_{a_i}$ for each i = 1, 2, ... using induction.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \leq c_{a_i}$ for each $i = 1, 2, \dots$ using induction.

I.e., Show:1. On night 1 that $c_{o_1} \leq c_{a_1}$.2. If $c_{o_{i-1}} \leq c_{a_{i-1}}$ on night i - 1, then $c_{o_i} \leq c_{a_i}$ on night i.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \leq c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \leq c_{a_1}$ because the algorithm picks the farthest site on night 1.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \leq c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \leq c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \leq c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \leq c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \le c_{a_{i-1}}$ for some i-1. Then, $c_{o_i} - c_{o_{i-1}} \le m$ (can't go farther than m in a day)

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i-1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$.

$$\boldsymbol{c}_{o_i} - \boldsymbol{c}_{a_{i-1}} \leq \boldsymbol{c}_{o_i} - \boldsymbol{c}_{o_{i-1}} \leq \boldsymbol{m}$$

 $c_{o_{i-1}} \leq c_{a_{i-1}}$ Subtracting a bigger number makes the result smaller.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i-1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$.

Now argue that k = t.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$. We know that S_{ALG} cannot finish before S_{OPT} , since S_{OPT} is optimal.

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$. We know that S_{ALG} cannot finish before S_{OPT} , since S_{OPT} is optimal. So, on S_{OPT} 's final day, $c_{o_t} \leq c_{a_t}$

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$. We know that S_{ALG} cannot finish before S_{OPT} , since S_{OPT} is optimal. So, on S_{OPT} 's final day, $c_{o_t} \leq c_{a_t}$, which means that S_{ALG} is also done on that day

Proof: Let $S_{ALG} = (c_{a_1}, ..., c_{a_k})$ be the campsites chosen by GCS and $S_{OPT} = (c_{o_1}, ..., c_{o_t})$ be an optimal selection.

First show that $c_{o_i} \le c_{a_i}$ for each i = 1, 2, ... using induction. Clearly $c_{o_1} \le c_{a_1}$ because the algorithm picks the farthest site on night 1.

Suppose $c_{o_{i-1}} \leq c_{a_{i-1}}$ for some i - 1. Then, $c_{o_i} - c_{o_{i-1}} \leq m$ (can't go farther than m in a day) and $c_{o_i} - c_{a_{i-1}} \leq m$. This means that on day i, S_{ALG} could stop at c_{o_i} since it is within m of $c_{a_{i-1}}$. It could also maybe go farther. Thus, $c_{o_i} \leq c_{a_i}$.

We know that S_{ALG} cannot finish before S_{OPT} , since S_{OPT} is optimal. So, on S_{OPT} 's final day, $c_{o_t} \leq c_{a_t}$, which means that S_{ALG} is also done on that day, so k = t and S_{ALG} is optimal.