
Test 1 Review
CSCI 432



Test 1 Logistics

1. During class on Thursday 2/13.

2. You can bring your book and any notes you would like, but 
no electronic devices.

3. You may assume anything proven in class or on 
homework.

4. Four questions (15 points):
1) Identify optimal substructure equation (5 points).
2) Write pseudocode for provided algorithm (3 points). 
3) Argue validity of provided algorithm (2 points).
4) Argue optimality of provided algorithm (5 points).
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Making Change

𝐶(𝑝) – minimum number of coins to make 𝑝 cents.

𝑥 – value (e.g. $0.25) of a coin used in the optimal solution.

So, we’ll check 
all possibilities.

But we don’t know what actual 
coin is in the optimal solution.

min
𝑑𝑖≤𝑝

𝐶 𝑝 − 𝑑𝑖 + 1 , 𝑝 > 0

0 , 𝑝 = 0
𝐶 𝑝 =

In general, suppose a country has denominations:

 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘

(US coins: 𝑑1 = 1, 𝑑2 = 5, 𝑑3 = 10, 𝑑4 = 25)



Rod Cutting

𝑂𝑛 = optimal profit from partitioning rod of length 𝑛.
𝑝𝑖 = profit for rod of length 𝑖. 

 𝑂𝑛 = max
1≤𝑖≤𝑛

𝑝𝑖 + 𝑂𝑛−𝑖

⋯

length 1 2 3 4 … 𝑛

profit $1 $5 $8 $9 … $?



Weighted Graph Problem

Input: 𝑛 node graph, 𝐺 =  (𝑉, 𝐸), with vertex weights.

Output: Subset of vertices such that they do not share any edges 
with each other, and the sum of their weights (𝑤𝑖) is maximized.

Optimal solution to 𝑉𝑖 is either the optimal for 𝑉𝑖−1 (with vertex 𝑖 
discarded), or the optimal for 𝑉𝑖−2 (with vertex 𝑖 included).

Let 𝐴[𝑖] be the 
weight of the optimal 

solution for 𝑉𝑖.
𝐴[𝑖] = max

𝐴[𝑖 − 1]

𝐴 𝑖 − 2 + 𝑤𝑖



Edit Distance
We want to align two strings, 𝑥 = [𝑥1, … , 𝑥𝑛] and 𝑦 = [𝑦1, … , 𝑦𝑚].

𝐸(𝑖, 𝑗) = optimal cost of aligning [𝑥1, … , 𝑥𝑖] and [𝑦1, … , 𝑦𝑗].

Can we say anything about optimal alignment of [𝑥1, … , 𝑥𝑖] and [𝑦1, … , 𝑦𝑗]?

Alignment Cost

𝑥𝑖

𝑦𝑗
0,1 + 𝐸 𝑖 − 1, 𝑗 − 1  

𝑥𝑖

−
1 + 𝐸(𝑖 − 1, 𝑗)

−
𝑦𝑗

1 + 𝐸(𝑖, 𝑗 − 1)

𝐸 𝑖, 𝑗 = min ൞

diff 𝑖, 𝑗 + 𝐸 𝑖 − 1, 𝑗 − 1

1 + 𝐸 𝑖 − 1, 𝑗

1 + 𝐸 𝑖, 𝑗 − 1

where diff 𝑖, 𝑗 = ൝
0, 𝑥𝑖 = 𝑦𝑗

1, 𝑥𝑖 ≠ 𝑦𝑗



Matrix-Chain Multiplication

Let 𝐶 𝑖, 𝑗 = Minimum number 
of scalar multiplications needed 
for multiplying 𝑀𝑖 × 𝑀𝑖+1 × ⋯ ×
𝑀𝑗

Input: 𝑛 matrices 𝑀1, 𝑀2, … , 𝑀𝑛 with dimensions of:
𝑚0 × 𝑚1, 𝑚1 × 𝑚2, … , 𝑚𝑛−1 × 𝑚𝑛 

Output: Minimum number of scalar multiplications needed to 
calculate 𝑀1 × 𝑀2 × ⋯ × 𝑀𝑛. 

Suppose the final multiplication in the 
optimal solution occurs at 𝑘:

𝑀𝑖 × ⋯ × 𝑀𝑘 𝑀𝑘+1 × ⋯ × 𝑀𝑗

A B C D E F

𝑪 𝒊, 𝒋 = min
𝒊≤𝒌<𝒋

𝑪 𝒊, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒋 + 𝒎𝒌 × 𝒎𝒊−𝟏 × 𝒎𝒋
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Single Room Scheduling

room_scheduling(courses C)

  C.sort_by_finish()

  selected = {C[1]}

  last_added = 1

  for i = 2 to C.length

   if C[i].start ≥ C[last_added].finish

    selected.add(C[i])

    last_added = i

  return selected
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Problem Statement

Suppose you are going on a long backpacking trip on some trail. You can 
hike up to 𝑚 miles a day. There are designated campsites along the trail 
at miles (𝑐1, 𝑐2, … , 𝑐𝑛). You need to stay in a designated campsite each 
night. Your goal is to hike the whole trail in as few days as possible. 

𝒎 = 𝟖

𝒎 = 𝟖𝒄𝟏 = 𝟑



Greedy Algorithm

Greedy Campsite Selection (GCS): Camp at the 
last reachable (i.e. < 𝑚) campsite each day.

𝒎 = 𝟖



Greedy Algorithm
Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Prove this by arguing that you can swap 𝑺𝑨𝑳𝑮 campsites 
into 𝑺𝑶𝑷𝑻 and keep 𝑺𝑶𝑷𝑻 both valid and optimal.



Theorem: Camping at the last reachable campsite each day is optimal.

Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and 

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

Suppose night 𝑖 is the first night that 𝑆𝐴𝐿𝐺  and 𝑆𝑂𝑃𝑇 do not stop at the same site.

Consider 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑜𝑖

∪ 𝑐𝑎𝑖
. 

𝑐𝑎𝑖
 will not require 𝑆𝑂𝑃𝑇 to go farther than 𝑚 on day 𝑖, since it worked in 

𝑆𝐴𝐿𝐺  and 𝑐𝑎𝑖−1
= 𝑐𝑜𝑖−1

. Likewise, 𝑐𝑎𝑖
 will also work for 𝑐𝑜𝑖+1

 since 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

, so if 

𝑐𝑜𝑖+1
− 𝑐𝑜𝑖

≤ 𝑚 then 𝑐𝑜𝑖+1
− 𝑐𝑎𝑖

≤ 𝑚 too.

We can repeat this by replacing campsites in 𝑆𝑂𝑃𝑇 with the corresponding site in 
𝑆𝐴𝐿𝐺  without exceeding the 𝑚-restriction or increasing the number of sites.

Thus, 𝑆𝐴𝐿𝐺  is optimal.



Single Room Scheduling
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let 𝐶 be the set of courses, 𝑆𝐴𝐿𝐺 ⊆ 𝐶 be the greedy algorithm’s selection, 
and 𝑆𝑂𝑃𝑇 ⊆ 𝐶 be an optimal selection, all sorted by increasing finish time. 

Suppose 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇[𝑖], for all 𝑖 < 𝑘 and 𝑆𝐴𝐿𝐺 𝑘 = 𝑐𝑖 ≠ 𝑐𝑗 = 𝑆𝑂𝑃𝑇 𝑘 .

Create the revised schedule 𝑆𝑂𝑃𝑇
′ = 𝑆𝑂𝑃𝑇 ∖ 𝑐𝑗 ∪ 𝑐𝑖 . (I.e., Swap 𝑆𝐴𝐿𝐺 𝑘  for 𝑆𝑂𝑃𝑇 𝑘 )

𝑐𝑖  is compatible with previous courses in 𝑆𝑂𝑃𝑇
′  since 𝑆𝐴𝐿𝐺 𝑖 = 𝑆𝑂𝑃𝑇 𝑖 = 𝑆𝑂𝑃𝑇

′ [𝑖], for all 𝑖 < 𝑘 

𝑐𝑖  is compatible with subsequent courses in 𝑆𝑂𝑃𝑇
′  since 𝑓𝑖 ≤ 𝑓𝑗. Otherwise, the greedy 

algorithm would have selected 𝑐𝑗  instead of 𝑐𝑖.

So 𝑆𝑂𝑃𝑇
′  is a valid schedule with the same number of courses as 𝑆𝑂𝑃𝑇, so 𝑆𝑂𝑃𝑇

′  is also optimal.

We can then proceed inductively and show that each course in 𝑆𝑂𝑃𝑇 can be replaced by the 
corresponding course in 𝑆𝐴𝐿𝐺  without violating compatibility. Since replacing every course in 
𝑆𝑂𝑃𝑇 with the courses in 𝑆𝐴𝐿𝐺  keeps the solution optimal, 𝑆𝐴𝐿𝐺  must be optimal. (i.e., we 
translated 𝑆𝑂𝑃𝑇 into 𝑆𝐴𝐿𝐺  at no extra cost).



Greedy Change Making (USD)
Greedy decision: Select the highest denomination coin that evenly subtracts from the 
remaining balance (i.e. max quarters + max dimes + max nickels + max pennies).

Proof of optimality: Let 𝑉 = $ value. Let 𝑞, 𝑑, 𝑛, 𝑝 be the number of quarters, dimes, 
nickels, and pennies used. 

Let 𝑇𝐴𝐿𝐺 = 𝑞𝐴𝐿𝐺 + 𝑑𝐴𝐿𝐺 + 𝑛𝐴𝐿𝐺 + 𝑝𝐴𝐿𝐺  be the algorithm’s solution and 
𝑇𝑂𝑃𝑇 = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 be an optimal solution.

𝑞𝑂𝑃𝑇 ≤ 𝑞𝐴𝐿𝐺  since 𝑞𝐴𝐿𝐺  is the largest value such that 𝑉 − 25 𝑞𝐴𝐿𝐺 < 25

If 𝑞𝑂𝑃𝑇 < 𝑞𝐴𝐿𝐺 , 𝑉 − 25 𝑞𝑂𝑃𝑇 ≥ 25. 
 I.e. 𝑉– 25 𝑞𝑂𝑃𝑇 = 10 𝑑𝑂𝑃𝑇 + 5 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇
     = 25 + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ 𝑉 = 25(𝑞𝑂𝑃𝑇 + 1) + 10(𝑑𝑂𝑃𝑇 − 2) + 5(𝑛𝑂𝑃𝑇 − 1) + 𝑝𝑂𝑃𝑇
 ⇒ Num coins = 𝑞𝑂𝑃𝑇 + 𝑑𝑂𝑃𝑇 + 𝑛𝑂𝑃𝑇 + 𝑝𝑂𝑃𝑇 – 2 < 𝑇𝑂𝑃𝑇. Contradiction.
 Thus, 𝑞𝑂𝑃𝑇 = 𝑞𝐴𝐿𝐺 . 

Repeat argument to show that 𝑑𝑂𝑃𝑇 = 𝑑𝐴𝐿𝐺 , 𝑛𝑂𝑃𝑇 = 𝑛𝐴𝐿𝐺 , and 𝑝𝑂𝑃𝑇 = 𝑝𝐴𝐿𝐺 . Thus, 
𝑇𝑂𝑃𝑇 = 𝑇𝐴𝐿𝐺  and 𝑇𝐴𝐿𝐺  is optimal.
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Optimality

1. Consider the output from the algorithm.

2. Consider an optimal solution.

3. Go to where OPT and ALG disagree.

4. Put ALG’s choice into OPT and show:
a. The result is still valid.
b. The cost is the same.

5. Repeat for all other disagreements.

6. Implies ALG = OPT.



Greedy Algorithm
Theorem: Camping at the last reachable campsite each day is optimal.

Proof:

Prove this by arguing that you can swap 𝑺𝑨𝑳𝑮 campsites 
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First show that 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖

 for each 𝑖 = 1,2, … using induction. 

I.e., Show:
1. On night 𝟏 that 𝒄𝒐𝟏

≤ 𝒄𝒂𝟏
.

2. If 𝒄𝒐𝒊−𝟏
≤ 𝒄𝒂𝒊−𝟏

on night 𝒊 − 𝟏, then 𝒄𝒐𝒊
≤ 𝒄𝒂𝒊

 on night 𝒊. 
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Proof: Let 𝑆𝐴𝐿𝐺 = (𝑐𝑎1
, … , 𝑐𝑎𝑘

) be the campsites chosen by GCS and 

𝑆𝑂𝑃𝑇 = (𝑐𝑜1
, … , 𝑐𝑜𝑡

) be an optimal selection.

First show that 𝑐𝑜𝑖
≤ 𝑐𝑎𝑖
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because the algorithm picks the farthest site on night 1.

Suppose 𝑐𝑜𝑖−1
≤ 𝑐𝑎𝑖−1

 for some 𝑖 − 1. Then, 𝑐𝑜𝑖
− 𝑐𝑜𝑖−1

≤ 𝑚 (can’t go farther 

than 𝑚 in a day) and 𝑐𝑜𝑖
− 𝑐𝑎𝑖−1

≤ 𝑚.

𝒄𝒐𝒊−𝟏
≤ 𝒄𝒂𝒊−𝟏

𝒄𝒐𝒊
− 𝒄𝒂𝒊−𝟏

≤ 𝒄𝒐𝒊
− 𝒄𝒐𝒊−𝟏

≤ 𝒎

Subtracting a bigger number 
makes the result smaller.
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than 𝑚 in a day) and 𝑐𝑜𝑖
− 𝑐𝑎𝑖−1

≤ 𝑚. This means that on day 𝑖, 𝑆𝐴𝐿𝐺  could stop 

at 𝑐𝑜𝑖
 since it is within 𝑚 of 𝑐𝑎𝑖−1

. 
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