Set Cover
CSCI 532
Handling NP-Completeness
Approximation Algorithms

\[\text{ALG} \leq \alpha \text{OPT} \]

Cost (size) of algorithm’s solution.
Approximation Ratio
Cost (size) of optimal solution.
Vertex Cover

VC 2-approximation algorithm:

while uncovered edge exists
 select both vertices from uncovered edge

An edge is uncovered if it does not share vertices with any previously selected edges. Let E' be the edges selected by the algorithm.

⇒ # vertices selected by algorithm = ALG = 2 $|E'|$

A vertex from each edge in E' must be part of every vertex cover.

⇒ $|E'| \leq \text{OPT}$

Therefore, $\text{ALG} = 2 |E'| \leq 2 \text{OPT} \implies \text{ALG} \leq 2 \text{OPT}$
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Example:
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Example:

\[U = \{1, 4, 7, 8, 10\} \]
\[S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\} \]
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Example:

\[U = \{1, 4, 7, 8, 10\} \]
\[S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\} \]

\[\{\{1, 7, 8\}, \{4, 8, 10\}\} \] \[\{\{1, 4, 7\}, \{7, 8\}\} \]
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Example:
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Algorithm:
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Greedy Algorithm:

while element of universe not included
select S_i with largest number of excluded elements.
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Greedy Algorithm:

\[
\text{while element of universe not included} \\
\quad \text{select } S_i \text{ with largest number of excluded elements.}
\]

1. Valid?
2. Polynomial Time?
3. Performance?
Set Cover

Set Cover: Given a set of elements (the universe), and sets containing those elements, find the smallest number of sets so that every element of the universe is included.

Greedy Algorithm:

while element of universe not included
 select S_i with largest number of excluded elements.

1. Valid. Every element of universe will be included.
2. Polynomial Time. $O(|S|^2|U|)$.
3. Performance?
Set Cover – Performance

Suppose the universe contains n elements.
Set Cover – Performance

Suppose the universe contains n elements.

$\text{ALG} \leq \alpha \text{OPT}$
Set Cover – Performance

Suppose the universe contains n elements.

ALG $\leq \alpha$ OPT
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

ALG = # sets selected by the algorithm to cover all n elements.
OPT = # sets in an optimal solution to cover all n elements.
Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: ?
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has $< \frac{n}{\text{OPT}}$ elements.
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has $< \frac{n}{\text{OPT}}$ elements. An optimal solution exists that uses OPT sets,
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has $< \frac{n}{\text{OPT}}$ elements. An optimal solution exists that uses OPT sets, so that optimal solution covers $< \frac{n}{\text{OPT}}$ OPT = n elements.
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because?

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has $< \frac{n}{\text{OPT}}$ elements. An optimal solution exists that uses OPT sets, so that optimal solution covers $< \frac{n}{\text{OPT}}$ OPT = n elements. But that means it is not a valid solution.
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements because the first set selected is the largest one.

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has $< \frac{n}{\text{OPT}}$ elements. An optimal solution exists that uses OPT sets, so that optimal solution covers $< \frac{n}{\text{OPT}} \text{OPT} = n$ elements. But that means it is not a valid solution.
Set Cover – Performance

Suppose the universe contains \(n \) elements.
The first set selected will have \(\geq \frac{n}{\text{OPT}} \) elements because the first set selected is the largest one and if all sets had fewer than \(\frac{n}{\text{OPT}} \) elements, there would be no way to cover all \(n \) elements with only \(\text{OPT} \) sets.

Claim: The first set selected will be the largest set.

Justification: At each iteration, we cover the largest number of uncovered elements, and all the elements are uncovered in the first iteration.

Suppose every set has \(< \frac{n}{\text{OPT}} \) elements. An optimal solution exists that uses \(\text{OPT} \) sets, so that optimal solution covers \(< \frac{n}{\text{OPT}} \) \(\text{OPT} = n \) elements. But that means it is not a valid solution.
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements.
Then, the number of elements remaining after the first iteration is:

?

ALG = # sets selected by the algorithm to cover all n elements.
OPT = # sets in an optimal solution to cover all n elements.
Set Cover – Performance

Suppose the universe contains \(n \) elements. The first set selected will have \(\geq \frac{n}{\text{OPT}} \) elements. Then, the number of elements remaining after the first iteration is:

\[
 n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}} \right)
\]

ALG = # sets selected by the algorithm to cover all \(n \) elements.
OPT = # sets in an optimal solution to cover all \(n \) elements.
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements.
Then, the number of elements remaining after the first iteration is:

$$n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)$$

Some remaining set has at least $\frac{n_1}{\text{OPT}}$ still not covered elements because?
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)$$

Some remaining set has at least $\frac{n_1}{\text{OPT}}$ still not covered elements because?

Case 1: The first set we picked is not in the optimal solution.

Case 2: The first set we picked is in the optimal solution.
Set Cover – Performance

Suppose the universe contains \(n \) elements. The first set selected will have \(\geq \frac{n}{\text{OPT}} \) elements. Then, the number of elements remaining after the first iteration is:

\[
n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}} \right)
\]

Some remaining set has at least \(\frac{n_1}{\text{OPT}} \) still not covered elements because?

Case 1: The first set we picked is not in the optimal solution.

Then, those \(n_1 \) elements must also be covered by OPT (i.e., same argument).

Case 2: The first set we picked is in the optimal solution.

ALG = # sets selected by the algorithm to cover all \(n \) elements.

OPT = # sets in an optimal solution to cover all \(n \) elements.
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements.
Then, the number of elements remaining after the first iteration is:

$$n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)$$

Some remaining set has at least $\frac{n_1}{\text{OPT}}$ still not covered elements because?

Case 1: The first set we picked is not in the optimal solution.

Then, those n_1 elements must also be covered by OPT (i.e., same argument).

Case 2: The first set we picked is in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{\text{OPT} - 1}$ uncovered elements,
Set Cover – Performance

Suppose the universe contains n elements.
The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements.
Then, the number of elements remaining after the first iteration is:

$$n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)$$

Some remaining set has at least $\frac{n_1}{\text{OPT}}$ still not covered elements because?

Case 1: The first set we picked is not in the optimal solution.

Then, those n_1 elements must also be covered by OPT (i.e., same argument).

Case 2: The first set we picked is in the optimal solution.

Then, a remaining set must have at least $\frac{n_1}{\text{OPT} - 1}$ uncovered elements, which is larger, so at worst (smallest), the set has $\frac{n_1}{\text{OPT}}$ uncovered elements.
Set Cover – Performance

Suppose the universe contains \(n \) elements.
The first set selected will have \(\geq \frac{n}{\text{OPT}} \) elements.
Then, the number of elements remaining after the first iteration is:

\[
n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)
\]

Some remaining set has at least \(\frac{n_1}{\text{OPT}} \) still not covered elements.
Then, the number of elements remaining after the second iteration is:

\[?\]
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have $\geq \frac{n}{\text{OPT}}$ elements. Then, the number of elements remaining after the first iteration is:

$$n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)$$

Some remaining set has at least $\frac{n_1}{\text{OPT}}$ still not covered elements. Then, the number of elements remaining after the second iteration is:

$$n_2 \leq n_1 - \frac{n_1}{\text{OPT}} = n_1 \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^2$$
Set Cover – Performance

Suppose the universe contains n elements. The first set selected will have \(\geq \frac{n}{\text{OPT}} \) elements.

Then, the number of elements remaining after the first iteration is:

\[
 n_1 \leq n - \frac{n}{\text{OPT}} = n \left(1 - \frac{1}{\text{OPT}}\right)
\]

Some remaining set has at least \(\frac{n_1}{\text{OPT}} \) still not covered elements.

Then, the number of elements remaining after the second iteration is:

\[
 n_2 \leq n_1 - \frac{n_1}{\text{OPT}} = n_1 \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^2
\]

In general, after t iterations,

\[
 n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t
\]
Set Cover – Performance

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

ALG = # sets selected by the algorithm to cover all n elements.
OPT = # sets in an optimal solution to cover all n elements.
Set Cover – Performance

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
Set Cover – Performance

Suppose the universe contains n elements. Before the tth iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the tth iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
How many sets do I add each iteration?
Set Cover – Performance

Suppose the universe contains n elements.
Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_t-1 - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
How many sets do I add each iteration? 1

ALG = # sets selected by the algorithm to cover all n elements.
OPT = # sets in an optimal solution to cover all n elements.
Set Cover – Performance

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
How many sets do I add each iteration? 1
$\text{ALG} = ?$
Set Cover – Performance

Suppose the universe contains n elements. Before the tth iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the tth iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
How many sets do I add each iteration? 1
ALG = # iterations
Set Cover – Performance

Suppose the universe contains n elements.
Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Big picture:
How many sets do I add each iteration? 1
ALG = # iterations
How many iterations until $n_t < 1$?
Set Cover – Performance

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Accepting that $1 - x < e^{-x}$ for all $x \neq 0$,

$$n_t \leq ?$$

ALG = # sets selected by the algorithm to cover all n elements.
OPT = # sets in an optimal solution to cover all n elements.
Set Cover – Performance

Suppose the universe contains \(n \) elements.

Before the \(t^{th} \) iteration, some remaining set has at least \(\frac{n_{t-1}}{OPT} \) uncovered elements and the number of elements remaining after the \(t^{th} \) iteration is:

\[
n_t \leq n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT}\right) \leq n \left(1 - \frac{1}{OPT}\right)^t
\]

Accepting that \(1 - x < e^{-x} \) for all \(x \neq 0 \),

\[
n_t \leq n \left(1 - \frac{1}{OPT}\right)^t < n \left(e^{-\frac{1}{OPT}}\right)^t = ne^{-\frac{t}{OPT}}
\]
Suppose the universe contains n elements.
Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT}\right) \leq n \left(1 - \frac{1}{OPT}\right)^t$$

Accepting that $1 - x < e^{-x}$ for all $x \neq 0$,

$$n_t \leq n \left(1 - \frac{1}{OPT}\right)^t < n \left(e^{-\frac{1}{OPT}}\right)^t = n e^{-\frac{t}{OPT}}$$

What does t equal to make $n e^{-\frac{t}{OPT}} < 1$?
Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Accepting that $1 - x < e^{-x}$ for all $x \neq 0$,

$$n_t \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t < n \left(e^{-\frac{1}{\text{OPT}}}\right)^t = ne^{-\frac{t}{\text{OPT}}}$$

If $t = \text{OPT} \ln n$, $n_t < ?$
Set Cover – Performance

Suppose the universe contains \(n \) elements.
Before the \(t^{th} \) iteration, some remaining set has at least \(\frac{n_{t-1}}{\text{OPT}} \) uncovered elements and the number of elements remaining after the \(t^{th} \) iteration is:

\[
n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}} \right) \leq n \left(1 - \frac{1}{\text{OPT}} \right)^t
\]

Accepting that \(1 - x < e^{-x} \) for all \(x \neq 0 \),

\[
n_t \leq n \left(1 - \frac{1}{\text{OPT}} \right)^t < n \left(e^{-\frac{1}{\text{OPT}}} \right)^t = ne^{-\frac{t}{\text{OPT}}}
\]

If \(t = \text{OPT} \ln n \), \(n_t < ne^{-\frac{\text{OPT} \ln n}{\text{OPT}}} = 1 \)
Set Cover – Performance

Suppose the universe contains n elements. Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{\text{OPT}}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t$$

Accepting that $1 - x < e^{-x}$ for all $x \neq 0$,

$$n_t \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t < n \left(e^{-\frac{1}{\text{OPT}}}\right)^t = ne^{-\frac{t}{\text{OPT}}}$$

If $t = \text{OPT} \ln n$, $n_t < ne^{-\frac{\text{OPT} \ln n}{\text{OPT}}} = 1$, which means that no elements remain.
Set Cover – Performance

Suppose the universe contains n elements.

Before the t^{th} iteration, some remaining set has at least $\frac{n_{t-1}}{OPT}$ uncovered elements and the number of elements remaining after the t^{th} iteration is:

$$n_t \leq n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT}\right) \leq n \left(1 - \frac{1}{OPT}\right)^t$$

Accepting that $1 - x < e^{-x}$ for all $x \neq 0$,

$$n_t \leq n \left(1 - \frac{1}{OPT}\right)^t < n \left(e^{-\frac{1}{OPT}}\right)^t = ne^{-t/OPT}$$

If $t = OPT \ln n$, $n_t < ne^{-OPT \ln n/OPT} = 1$, which means that no elements remain. So, the universe is covered after at most $t = OPT \ln n$ iterations.
Set Cover – Performance

Suppose the universe contains \(n \) elements.

Before the \(t^{\text{th}} \) iteration, some remaining set has at least \(\frac{n_{t-1}}{\text{OPT}} \) uncovered elements and the number of elements remaining after the \(t^{\text{th}} \) iteration is:

\[
n_t \leq n_{t-1} - \frac{n_{t-1}}{\text{OPT}} = n_{t-1} \left(1 - \frac{1}{\text{OPT}}\right) \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t
\]

Accepting that \(1 - x < e^{-x} \) for all \(x \neq 0 \),

\[
n_t \leq n \left(1 - \frac{1}{\text{OPT}}\right)^t < n \left(e^{-\frac{1}{\text{OPT}}}\right)^t = ne^{-\frac{t}{\text{OPT}}}
\]

If \(t = \text{OPT} \ln n \), then
\[
n_t < ne^{-\frac{\text{OPT} \ln n}{\text{OPT}}} = 1,
\]
which means that no elements remain. So, the universe is covered after at most \(t = \text{OPT} \ln n \) iterations.

\[
\Rightarrow \text{ALG} \leq \ln n \text{ OPT}
\]

ALG = # sets selected by the algorithm to cover all \(n \) elements.

OPT = # sets in an optimal solution to cover all \(n \) elements.
Set Cover – Tightness

Find an instance of 16 elements where the optimal solution is 2, but the algorithm will find a solution of 4.
Set Cover – Tightness

Find an instance of 16 elements where the optimal solution is 2, but the algorithm will find a solution of 4.
Set Cover – Tightness

Find an instance of 16 elements where the optimal solution is 2, but the algorithm will find a solution of 4.

In General:

Universe of size $n = 2^k$. OPT = 2. ALG = k.

$\Rightarrow k \in \Omega(\log_2 2^k) = \Omega(\ln 2^k) = \Omega(\ln n)$
Set Cover – Inapproximability

It turns out that Set Cover cannot be approximated within the bound of \((1 - o(1)) \ln n\), unless P = NP.
Set Cover – Inapproximability

It turns out that Set Cover cannot be approximated within the bound of \((1 - o(1)) \ln n \), unless \(P = NP \).

APX: Set of optimization problems that can be approximated within a constant ratio.

Vertex Cover \(\in \) APX
Set Cover \(\notin \) APX