Minimum Spanning Irees
CSCI 532

Entity

Neighbors

b,c

a,c,d

a,b,e

b,e,f

c,d,f

Graphs are mathematical objects
that represent connectivity
relationships between entities.

= DO Q|0 T |W

d,e

Edges

v
G = (V,E)

T

Vertices
(or Nodes)

Graphs are mathematical objects
that represent connectivity
relationships between entities.

Graphs

Vertex | Neighbors
a b,c

b a,c,d

C a,b,e

d b,e,f

e c,d,f

f d,e

Edges

v
G = (V,E)

T

Vertices
(or Nodes)

 Edges can be undirected...

Edges

Graphs b >(d |
S, e

v
(© >@/' Vertices

(or Nodes)

 Edges can be undirected or directed.

Edges

v
G = (V,E)

T

Vertices
(or Nodes)

 Edges can be directed or undirected.
 Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Edges
G- B
T;

Vertices
(or Nodes)

Edges can be directed or undirected.
Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
Path = Sequence of vertices connected by edges without loops.

a,cef v a,c,d,f X
b,d / c,e,d,fe X

Edges

v
G = (V,E)

T

Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.

Cycle = Sequence of vertices that start and end at same vertex.
(and usually with no

c,b,d,e,c v a,c,e,f X other repeated vertices.)

P degree =3 Edges

Graphs) (I
G = (V,E)
AN t
degree = 2 Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).

Graphs Edfes
G = (V,E)
T

Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Graphs Edfes
G = (V,E)
T

Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Graphs Edfes
G = (V,E)
T

Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Edges

Graphs I

G = (V,E)
T

Vertices

(or Nodes)
Edges can be directed or undirected.
Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.
Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Edges

v
G = (V,E)

T

Vertices
(or Nodes)

Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Edges (or vertices) can be weighted (cost associated with using it).

Vertex

Graphs are mathematical objects
that represent connectivity
relationships between entities.

= DO Q|0 T |W

Vertex | Neighbors
a b,c

b a,c,d

C a,b,e

d b,e,f

e c,d,f

f d,e

Topologically equivalent
(i.e., same connectivity)

Special Graphs

Special Graphs

 Connected Graph = Graph that has a path between every vertex pair.
* Acyclic Graph = Graph with no cycles.

d

SN

Special Graphs

b »(d
Vertices (or Nodes) B
v Edges } G=(V,E)
(O—>(e

 Connected Graph = Graph that has a path between every vertex pair.
* Acyclic Graph = Graph with no cycles.
* Directed Acyclic Graph (DAG) = Directed graph with no cycles.

bO@D\

6

Special Graphs

b @\®
@ Vertices (or Nodes)} G = (V,E)

Edges
© ®

Connected Graph = Graph that has a path between every vertex pair.
Acyclic Graph = Graph with no cycles.

Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Tree = Connected acyclic graph.

Special Graphs

b @\®
@; Vertices (or Nodes)} G = (V,E)

Edges
© @ ®

Connected Graph = Graph that has a path between every vertex pair.
Acyclic Graph = Graph with no cycles.
Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Tree = Connected acyclic graph. Okl Root
4 Parent of e

Leaf o Child of d

Special Graphs

N
@) Vertices (or Nodes)} G = (V,E)

Edges
© ®

Connected Graph = Graph that has a path between every vertex pair.
Acyclic Graph = Graph with no cycles.
Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Tree = Connected acyclic graph. Topologically
@ equivalent, but
@ information
6 may be lost...

© O ©

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Spanning tree if it is a tree and :/% z :/C o
O

includes all vertices in the graph.

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...
Spanning tree if it is a tree and :/C o
includes all vertices in the graph. O

Minimum spanning tree if it is a 1 1 1 1
spanning tree whose sum of edge) 100 . 100
costs is the minimum possible value.

Kruskal’'s MIST Algorithm

Goal: Given a connected graph,
find its Minimum Spanning Tree.

Kruskal’'s MIST Algorithm

1 > 1, N 4
B
e
Greedy Algorithms:

 Make the choice that best helps some objective.
Do not look ahead, plan, or revisit past decisions.

 Hope that optimal local choices lead to optimal global solutions.

Kruskal’'s MIST Algorithm

Algorithm: 27?

5
1 , \ 4
B
e
Greedy Algorithms:

 Make the choice that best helps some objective.
Do not look ahead, plan, or revisit past decisions.

 Hope that optimal local choices lead to optimal global solutions.

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Greedy Algorithms:
 Make the choice that best helps some objective.

Do not look ahead, plan, or revisit past decisions.

 Hope that optimal local choices lead to optimal global solutions.

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

7 - 3
YN
11 S

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

7 - 3
|
11 >

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

7 - 3
|
11 >

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Q !
N

i ‘3

11 S

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Q !
N

[‘3

11 S

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Whatis the running time?
3. Is the solution optimal?

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

What do we need to show?

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

~ T is a spanning tree of G

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Q !
N

[‘3

11 S

What are some questions we may have about the algorithm?

L e Lt el -4E : TP . 2
2. Whatis the running time?
3. Is the solution optimal?

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvsT(G=(V,E)) {
T =20
sort(E) //smallest to largest weight
for (e 1n E) {
1f (T U {e} 1s acyclic) {
T=TU {e}

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMsT(G=(V,E)) {
T=20
sort(eE) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) {
1f (T U {e} 1s acyclic) {
T=TU {e}

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMsT(G=(V,E)) {
T=20
sort(eE) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) { «— O(|E)
1f (T U {e} 1s acyclic) {
T=TU {e}

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMsT(G=(V,E)) {
T=20
sort(eE) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) { «— O(|E)
if (T U {e} 1s acyclic) { «— 0O(|V| + |E|) using BFS
T=TU {e}

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvusT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) { «—0O(|E)
if (T U {e} 1s acyclic) { «— 0O(|V| + |E|) using BFS
T=TU {e}

1 Running time
} € O(|E|log(|ED) + |EI(IV] + |E]))
return T € O(|E|* + |E||V])

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Can be improved to 0(1),

findMsT(G=(V,E)) { thus O(|E| log(|E|)) overall

T =0

sort(E) //smallest to largest weight <— O(|E|log(|E|))

for
1f (T U {e} 1s acyclic)
T=TU {e}

<+— O(|V| + |E|) using BFS

Runnling time
€ 0(|E1og(IED) + |EI(IV] + |ED)
return T € O(|E|* + |ElIV])

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

7 3
Q\ ______ Q
2 A
1 \\ ~ 1
1:) \\ 4
I N

What are some questions we may have about the algorithm?

L e Lt el -4E : TP . 2

3. Is the solution optimal?

Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: T is an MST, because???

MST Cut Property (Assume unique

edge costs.

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof:

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof:

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof:

V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not

be a tree).
Let e be the cheapest edge between § and VV\S.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.
Suppose T is a spanning tree that does not include e.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. Then:
1. T U {e} must have a cycle. Because?

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V/\S. e’
(Since there must be apathfromu € Stov e V\SinT)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e’ between S and V/\S.
(Since there must be apathfromu € Stov e V\SinT)

Need to make sure we pick an edge
between S and V'\ S on the cycle!

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and V\S.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and V\S.

Remove e’ toform T’ =T U {e}\{e'}.

	Slide 1: Minimum Spanning Trees CSCI 532
	Slide 2: Graphs
	Slide 3: Graphs
	Slide 4: Graphs
	Slide 5: Graphs
	Slide 6: Graphs
	Slide 7: Graphs
	Slide 8: Graphs
	Slide 9: Graphs
	Slide 10: Graphs
	Slide 11: Graphs
	Slide 12: Graphs
	Slide 13: Graphs
	Slide 14: Graphs
	Slide 15: Graphs
	Slide 16: Graphs
	Slide 17: Special Graphs
	Slide 18: Special Graphs
	Slide 19: Special Graphs
	Slide 20: Special Graphs
	Slide 21: Special Graphs
	Slide 22: Special Graphs
	Slide 23: Minimum Spanning Tree (MST)
	Slide 24: Minimum Spanning Tree (MST)
	Slide 25: Minimum Spanning Tree (MST)
	Slide 26: Kruskal’s MST Algorithm
	Slide 27: Kruskal’s MST Algorithm
	Slide 28: Kruskal’s MST Algorithm
	Slide 29: Kruskal’s MST Algorithm
	Slide 30: Kruskal’s MST Algorithm
	Slide 31: Kruskal’s MST Algorithm
	Slide 32: Kruskal’s MST Algorithm
	Slide 33: Kruskal’s MST Algorithm
	Slide 34: Kruskal’s MST Algorithm
	Slide 35: Kruskal’s MST Algorithm
	Slide 36: Kruskal’s MST Algorithm
	Slide 37: Kruskal’s MST Algorithm
	Slide 38: Kruskal’s MST Algorithm
	Slide 39: Kruskal’s MST Algorithm
	Slide 40: Kruskal’s MST Algorithm
	Slide 41: Kruskal’s MST Algorithm
	Slide 42: Kruskal’s MST Algorithm
	Slide 43: Kruskal’s MST Algorithm
	Slide 44: Kruskal’s MST Algorithm
	Slide 45: Kruskal’s MST Algorithm
	Slide 46: Kruskal’s MST Algorithm
	Slide 47: Kruskal’s MST Algorithm
	Slide 48: Kruskal’s MST Algorithm
	Slide 49: Kruskal’s MST Algorithm
	Slide 50: Kruskal’s MST Algorithm
	Slide 51: Kruskal’s MST Algorithm
	Slide 52: Kruskal’s MST Algorithm
	Slide 53: MST Cut Property
	Slide 54: MST Cut Property
	Slide 55: MST Cut Property
	Slide 56: MST Cut Property
	Slide 57: MST Cut Property
	Slide 58: MST Cut Property
	Slide 59: MST Cut Property
	Slide 60: MST Cut Property
	Slide 61: MST Cut Property
	Slide 62: MST Cut Property
	Slide 63: MST Cut Property
	Slide 64: MST Cut Property

