Minimum Spanning Trees CSCI 532

Graphs

Entity	Neighbors
а	b,c
b	a,c,d
С	a,b,e
d	b,e,f
е	c,d,f
f	d,e

Graphs are mathematical objects that represent connectivity relationships between entities.

Vertex	Neighbors
а	b,c
b	a,c,d
С	a,b,e
d	b,e,f
е	c,d,f
f	d,e

Graphs are mathematical objects that represent connectivity relationships between entities.

Edges can be undirected...

Graphs a b d f

Edges can be undirected or directed.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.

(and usually with no other repeated vertices.)

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).
- Cut = Partition of vertices into two disjoint subsets.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).
- Cut = Partition of vertices into two disjoint subsets.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).
- Cut = Partition of vertices into two disjoint subsets.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).
- Cut = Partition of vertices into two disjoint subsets.

- Edges can be directed or undirected.
- Simple graph = At most one edge between pair of vertices and no edges that start and end at same vertex.
- Path = Sequence of vertices connected by edges without loops.
- Cycle = Sequence of vertices that start and end at same vertex.
- Degree of a vertex = deg(v) = # of edges touching it (undirected).
- Cut = Partition of vertices into two disjoint subsets.
- Edges (or vertices) can be weighted (cost associated with using it).

Graphs

Vertex	Neighbors
а	b,c
b	a,c,d
С	a,b,e
d	b,e,f
е	c,d,f
f	d,e

Graphs are mathematical objects that represent connectivity relationships between entities.

Graphs

Vertex	Neighbors
а	b,c
b	a,c,d
С	a,b,e
d	b,e,f
е	c,d,f
f	d,e

Topologically equivalent (i.e., same connectivity)

Vertex	Neighbors
а	b,c
b	a,c,d
С	a,b,e
d	b,e,f
е	c,d,f
f	d,e

Connected Graph = Graph that has a path between every vertex pair.

- Connected Graph = Graph that has a path between every vertex pair.
- Acyclic Graph = Graph with no cycles.

- Connected Graph = Graph that has a path between every vertex pair.
- Acyclic Graph = Graph with no cycles.
- Directed Acyclic Graph (DAG) = Directed graph with no cycles.

- Connected Graph = Graph that has a path between every vertex pair.
- Acyclic Graph = Graph with no cycles.
- Directed Acyclic Graph (DAG) = Directed graph with no cycles.
- Tree = Connected acyclic graph.

- Connected Graph = Graph that has a path between every vertex pair.
- Acyclic Graph = Graph with no cycles.
- Directed Acyclic Graph (DAG) = Directed graph with no cycles.

- Connected Graph = Graph that has a path between every vertex pair.
- Acyclic Graph = Graph with no cycles.
- Directed Acyclic Graph (DAG) = Directed graph with no cycles.
- Tree = Connected acyclic graph.

Topologically equivalent, but information may be lost...

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Spanning tree if it is a tree and includes all vertices in the graph.

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...

Spanning tree if it is a tree and includes all vertices in the graph.

Minimum spanning tree if it is a spanning tree whose sum of edge costs is the minimum possible value.

Goal: Given a connected graph, find its Minimum Spanning Tree.

Greedy Algorithms:

- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.

Algorithm: ??

Greedy Algorithms:

- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Greedy Algorithms:

- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

- 1. Is the solution valid? (Does it actually find a spanning tree?)
- 2. What is the running time?
- 3. Is the solution optimal?

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?

Algorithm: Add the edge with smallest weight, that does not create a cycle.

<u>Proof of validity:</u> Let G = (V, E) be the connected graph, and $T \subseteq E$ be the set of edges resulting from Kruskal's algorithm.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

<u>Proof of validity:</u> Let G = (V, E) be the connected graph, and $T \subseteq E$ be the set of edges resulting from Kruskal's algorithm.

What do we need to show?

Algorithm: Add the edge with smallest weight, that does not create a cycle.

<u>Proof of validity:</u> Let G = (V, E) be the connected graph, and $T \subseteq E$ be the set of edges resulting from Kruskal's algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

<u>Proof of validity:</u> Let G = (V, E) be the connected graph, and $T \subseteq E$ be the set of edges resulting from Kruskal's algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected unreached nodes without creating cycles.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

<u>Proof of validity:</u> Let G = (V, E) be the connected graph, and $T \subseteq E$ be the set of edges resulting from Kruskal's algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected unreached nodes without creating cycles.

T is a spanning tree of G

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

- 1. Is the solution valid? (Does it actually find a spanning tree?)
- 2. What is the running time?
- 3. Is the solution optimal?

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
findMST(G=(V,E)) {
  T = \emptyset
  sort(E) //smallest to largest weight
  for (e in E) {
    if (T U {e} is acyclic) {
      T = T U \{e\}
  return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
findMST(G=(V,E)) {
  T = \emptyset
  sort(E) //smallest to largest weight \longleftarrow O(|E| \log(|E|))
  for (e in E) {
    if (T U {e} is acyclic) {
       T = T U \{e\}
  return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
findMST(G=(V,E)) {
  T = \emptyset
  sort(E) //smallest to largest weight \longleftarrow O(|E| \log(|E|))
  for (e in E) \{ \longleftarrow O(|E|) \}
     if (T U {e} is acyclic) {
       T = T U \{e\}
  return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
findMST(G=(V,E)) {
  T = \emptyset
  sort(E) //smallest to largest weight \longleftarrow O(|E| \log(|E|))
  for (e in E) \{ \longleftarrow O(|E|) \}
     if (T U {e} is acyclic) { \longleftarrow O(|V| + |E|) using BFS
        T = T U \{e\}
   return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
findMST(G=(V,E)) {
  T = \emptyset
  sort(E) //smallest to largest weight \longleftarrow O(|E| \log(|E|))
  for (e in E) { \leftarrow O(|E|)
     if (T U {e} is acyclic) { \longleftarrow O(|V| + |E|) using BFS
       T = T U \{e\}
                                 Running time
                                     \in O(|E|\log(|E|)+|E|(|V|+|E|))
                                     \in O(|E|^2+|E||V|)
  return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

```
Running Time:
                                  Can be improved to O(1),
                                  thus O(|E| \log(|E|)) overall
findMST(G=(V,E))
   sort(E) //smallest to largest weight \longleftarrow O(|E| \log(|E|))
     if (T U {e} is acyclic) {
  T = T U {e}
                                          - O(|V| + |E|) using BFS
                                   Running time
                                      \in O(|E|\log(|E|)+|E|(|V|+|E|))
                                      \in O(|E|^2 + |E||V|)
   return T
```

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

- 1. Is the solution valid? (Does it actually find a spanning tree?)
- 2. What is the running time?
 - 3. Is the solution optimal?

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: *T* is an MST, because???

Assume unique edge costs.

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e.

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. Because?

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, adding e will create a cycle.)

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, adding e will create a cycle.)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)

Need to make sure we pick an edge between S and $V \setminus S$ on the cycle!

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

<u>Lemma:</u> Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

<u>Proof:</u> Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a spanning tree that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

