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Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.

Cycle = Sequence of vertices that start and end at same vertex.
(and usually with no

c,b,d,e,c v a,c,e,f X other repeated vertices.)
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Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
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Cut = Partition of vertices into two disjoint subsets.
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Edges can be directed or undirected.

Simple graph = At most one edge between pair of vertices and no
edges that start and end at same vertex.

Path = Sequence of vertices connected by edges without loops.
Cycle = Sequence of vertices that start and end at same vertex.
Degree of a vertex = deg(v) = # of edges touching it (undirected).
Cut = Partition of vertices into two disjoint subsets.

Edges (or vertices) can be weighted (cost associated with using it).
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Graphs are mathematical objects
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Topologically equivalent
(i.e., same connectivity)
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Special Graphs

 Connected Graph = Graph that has a path between every vertex pair.
* Acyclic Graph = Graph with no cycles.
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 Connected Graph = Graph that has a path between every vertex pair.
* Acyclic Graph = Graph with no cycles.
* Directed Acyclic Graph (DAG) = Directed graph with no cycles.
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Connected Graph = Graph that has a path between every vertex pair.
Acyclic Graph = Graph with no cycles.

Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Tree = Connected acyclic graph.
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Connected Graph = Graph that has a path between every vertex pair.
Acyclic Graph = Graph with no cycles.
Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Tree = Connected acyclic graph. Topologically
@ equivalent, but
@ information
6 may be lost...

© O ©



Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...



Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...
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Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a...
Spanning tree if it is a tree and :/C o
includes all vertices in the graph. O

Minimum spanning tree if it is a 1 1 1 1
spanning tree whose sum of edge ) 100 . 100
costs is the minimum possible value.



Kruskal’'s MIST Algorithm

Goal: Given a connected graph,
find its Minimum Spanning Tree.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. Whatis the running time?
3. Is the solution optimal?
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Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let G = (V, E) be the connected graph, and T € E be the set of edges
resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

~ T is a spanning tree of G
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Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findvusT(G=(V,E)) {
T=20
sort(E) //smallest to largest weight <— O(|E|log(|E|))
for (e 1n E) { «—0O(|E)
if (T U {e} 1s acyclic) { «— 0O(|V| + |E|) using BFS
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Can be improved to 0(1),

findMsT(G=(V,E)) { thus O(|E| log(|E|)) overall

T =0

sort(E) //smallest to largest weight <— O(|E|log(|E|))

for
1f (T U {e} 1s acyclic)
T=TU {e}

<+— O(|V| + |E|) using BFS

Runnling time
€ 0(|E1og(IED) + |EI(IV] + |ED)
return T € O(|E|* + |ElIV])



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?
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3. Is the solution optimal?



Kruskal’'s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: T is an MST, because???
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MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. Then:
1. T U {e} must have a cycle. (Since spanning tree T already has a
path between u and v, adding e will create a cycle. )

2. That cycle must have another edge e’ between S and V/\S.
(Since there must be apathfromu € Stov e V\SinT)

Need to make sure we pick an edge
between S and V'\ S on the cycle!




MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and VV\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and V\S.




MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I/\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and V\S.

Remove e’ toform T’ =T U {e}\{e'}.
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