
Minimum Spanning Trees
CSCI 532

Graphs
a

b

c

d

e

f

Graphs are mathematical objects
that represent connectivity

relationships between entities.

Entity Neighbors

a b,c

b a,c,d

c a,b,e

d b,e,f

e c,d,f

f d,e

Graphs Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f

Graphs are mathematical objects
that represent connectivity

relationships between entities.

Vertex Neighbors

a b,c

b a,c,d

c a,b,e

d b,e,f

e c,d,f

f d,e

Graphs

• Edges can be undirected…

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f

Graphs

• Edges can be undirected or directed.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f

X
Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f
X

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f

a,c,e,f a,c,d,f
b,d c,e,d,f,e

✓
✓

✗
✗

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

a

b

c

d

e

f

c,b,d,e,c a,c,e,f✓ ✗
(and usually with no
other repeated vertices.)

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

degree = 3

degree = 2

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.
• Edges (or vertices) can be weighted (cost associated with using it).

2
7

4

6
3

1

5

4

Edges

𝑮 = (𝑽, 𝑬)

Vertices
(or Nodes)

Graphs

Graphs are mathematical objects
that represent connectivity

relationships between entities.

Vertex Neighbors

a b,c

b a,c,d

c a,b,e

d b,e,f

e c,d,f

f d,e

a

b

c

d

e

f

a

b

c

d

e

f

Graphs

=

=
Vertex Neighbors

a b,c

b a,c,d

c a,b,e

d b,e,f

e c,d,f

f d,e

Vertex Neighbors

a b,c

b a,c,d

c a,b,e

d b,e,f

e c,d,f

f d,e

a

b

c

d

e

f

Topologically equivalent
(i.e., same connectivity)

a

b

c

d

e

f

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

a

b

c

d

e

fa

b

c

d

e

f

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

a

b

c

d

e

f

a

b

c

d

e

f

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.

Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

a
b

c

d

f e

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph.

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph. Root

Leaf Child of d

Parent of e

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

a
b

c

d

f e

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph.

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)

a
b

c

d

f e
a b

c

d

f e

Topologically
equivalent, but
information
may be lost…

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

Minimum Spanning Tree (MST)

✓ 
Spanning tree if it is a tree and
includes all vertices in the graph.

Given a connected graph, a subset of edges is a…

Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…

✓ 

100

1

1

1

1
100

1
1

Spanning tree if it is a tree and
includes all vertices in the graph.

Minimum spanning tree if it is a
spanning tree whose sum of edge
costs is the minimum possible value.

Kruskal’s MST Algorithm

1
1 4

3 3

5
2

7 3

2

Goal: Given a connected graph,
find its Minimum Spanning Tree.

Kruskal’s MST Algorithm

1
1 4

3 3

5
2

7 3

2

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Kruskal’s MST Algorithm

Algorithm: ??

1
1 4

3 3

5
2

7 3

2

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

 What do we need to show?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected
unreached nodes without creating cycles.

∴ 𝑇 is a spanning tree of 𝐺

1 1 4

3 3

52
7 3

2

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Running time

 ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

 ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
 T = ∅
 sort(E) //smallest to largest weight
 for (e in E) {
 if (T U {e} is acyclic) {
 T = T U {e}
 }
 }
 return T
}

𝑶(𝑬 𝐥𝐨𝐠(𝑬))

𝑶(𝑬)
𝑶(𝑽 + 𝑬) using BFS

Running time

 ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

 ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Can be improved to 𝑶 𝟏 ,
thus 𝑶(𝑬 𝐥𝐨𝐠(𝑬)) overall

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?

Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: 𝑇 is an MST, because???

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof:

Assume unique
edge costs.

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof:

𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof:

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

𝒆

𝒆′

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆.

𝒆

𝒆′

𝑺
𝑽\𝑺

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. Because?

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1. 𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.)

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)

Need to make sure we pick an edge
between 𝑺 and 𝑽\𝑺 on the cycle!

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

𝒇

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. 𝑻 ∪ {𝒆} must have a cycle and that
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not
be a tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is a spanning tree that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆.

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣

	Slide 1: Minimum Spanning Trees CSCI 532
	Slide 2: Graphs
	Slide 3: Graphs
	Slide 4: Graphs
	Slide 5: Graphs
	Slide 6: Graphs
	Slide 7: Graphs
	Slide 8: Graphs
	Slide 9: Graphs
	Slide 10: Graphs
	Slide 11: Graphs
	Slide 12: Graphs
	Slide 13: Graphs
	Slide 14: Graphs
	Slide 15: Graphs
	Slide 16: Graphs
	Slide 17: Special Graphs
	Slide 18: Special Graphs
	Slide 19: Special Graphs
	Slide 20: Special Graphs
	Slide 21: Special Graphs
	Slide 22: Special Graphs
	Slide 23: Minimum Spanning Tree (MST)
	Slide 24: Minimum Spanning Tree (MST)
	Slide 25: Minimum Spanning Tree (MST)
	Slide 26: Kruskal’s MST Algorithm
	Slide 27: Kruskal’s MST Algorithm
	Slide 28: Kruskal’s MST Algorithm
	Slide 29: Kruskal’s MST Algorithm
	Slide 30: Kruskal’s MST Algorithm
	Slide 31: Kruskal’s MST Algorithm
	Slide 32: Kruskal’s MST Algorithm
	Slide 33: Kruskal’s MST Algorithm
	Slide 34: Kruskal’s MST Algorithm
	Slide 35: Kruskal’s MST Algorithm
	Slide 36: Kruskal’s MST Algorithm
	Slide 37: Kruskal’s MST Algorithm
	Slide 38: Kruskal’s MST Algorithm
	Slide 39: Kruskal’s MST Algorithm
	Slide 40: Kruskal’s MST Algorithm
	Slide 41: Kruskal’s MST Algorithm
	Slide 42: Kruskal’s MST Algorithm
	Slide 43: Kruskal’s MST Algorithm
	Slide 44: Kruskal’s MST Algorithm
	Slide 45: Kruskal’s MST Algorithm
	Slide 46: Kruskal’s MST Algorithm
	Slide 47: Kruskal’s MST Algorithm
	Slide 48: Kruskal’s MST Algorithm
	Slide 49: Kruskal’s MST Algorithm
	Slide 50: Kruskal’s MST Algorithm
	Slide 51: Kruskal’s MST Algorithm
	Slide 52: Kruskal’s MST Algorithm
	Slide 53: MST Cut Property
	Slide 54: MST Cut Property
	Slide 55: MST Cut Property
	Slide 56: MST Cut Property
	Slide 57: MST Cut Property
	Slide 58: MST Cut Property
	Slide 59: MST Cut Property
	Slide 60: MST Cut Property
	Slide 61: MST Cut Property
	Slide 62: MST Cut Property
	Slide 63: MST Cut Property
	Slide 64: MST Cut Property

