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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.
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Graphs

• Edges can be directed or undirected.
• Simple graph = At most one edge between pair of vertices and no 

edges that start and end at same vertex.
• Path = Sequence of vertices connected by edges without loops.
• Cycle = Sequence of vertices that start and end at same vertex.
• Degree of a vertex = deg(𝑣) = # of edges touching it (undirected).
• Cut = Partition of vertices into two disjoint subsets.
• Edges (or vertices) can be weighted (cost associated with using it).
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Graphs

Graphs are mathematical objects 
that represent connectivity 

relationships between entities.
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Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
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Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
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Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
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• Connected Graph = Graph that has a path between every vertex pair.
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• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph.

a

b

c

d

e

f
Vertices (or Nodes)
Edges

𝑮 = (𝑽, 𝑬)



Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
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Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph.
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may be lost…



Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…



Minimum Spanning Tree (MST)

✓ 
Spanning tree if it is a tree and 
includes all vertices in the graph.

Given a connected graph, a subset of edges is a…



Minimum Spanning Tree (MST)

Given a connected graph, a subset of edges is a…
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Spanning tree if it is a tree and 
includes all vertices in the graph.

Minimum spanning tree if it is a 
spanning tree whose sum of edge 
costs is the minimum possible value.



Kruskal’s MST Algorithm
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Goal: Given a connected graph, 
find its Minimum Spanning Tree.
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• Make the choice that best helps some objective. 

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal global solutions.

Greedy Algorithms:
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

1
1 4

3 3

5
2

7 3

2

What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

   What do we need to show?



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without 
creating cycles) and there are no cycles.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without 
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected 
unreached nodes without creating cycles.
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let 𝐺 = (𝑉, 𝐸) be the connected graph, and 𝑇 ⊆ 𝐸 be the set of edges 
resulting from Kruskal’s algorithm.

𝑇 is a tree because it is connected (otherwise we could have added more edges without 
creating cycles) and there are no cycles.

𝑇 spans 𝐺 because if it did not, we could have added more edges to connected 
unreached nodes without creating cycles.

∴ 𝑇 is a spanning tree of 𝐺
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
  T = ∅
  sort(E) //smallest to largest weight
  for (e in E) {
    if (T U {e} is acyclic) {
      T = T U {e}
    }
  }
  return T
}
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𝑶( 𝑽 + 𝑬 ) using BFS
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Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:
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  sort(E) //smallest to largest weight
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    if (T U {e} is acyclic) {
      T = T U {e}
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}
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Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Running Time:

findMST(G=(V,E)) {
  T = ∅
  sort(E) //smallest to largest weight
  for (e in E) {
    if (T U {e} is acyclic) {
      T = T U {e}
    }
  }
  return T
}

𝑶( 𝑬  𝐥𝐨𝐠( 𝑬 ))

𝑶( 𝑬 )
𝑶( 𝑽 + 𝑬 ) using BFS

Running time 

       ∈ 𝑶 𝑬 𝐥𝐨𝐠 𝑬 + 𝑬 𝑽 + 𝑬

       ∈ 𝑶 |𝑬|𝟐 + 𝑬 𝑽

Can be improved to 𝑶 𝟏 , 
thus 𝑶( 𝑬  𝐥𝐨𝐠( 𝑬 )) overall



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?

1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?



Kruskal’s MST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: 𝑇 is an MST, because???



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof:

Assume unique 
edge costs.



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

𝒆

𝒆′

𝑺
𝑽\𝑺



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. 
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1.  𝑻 ∪ {𝒆} must have a cycle. Because?
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1.  𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a  

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle.) 

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣



MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1.  𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a  

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle. ) 

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. Then:
1.  𝑻 ∪ {𝒆} must have a cycle. (Since spanning tree 𝑻 already has a  

path between 𝑢 and 𝑣, adding 𝒆 will create a cycle. ) 

2. That cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
(Since there must be a path from 𝑢 ∈ 𝑆 to 𝑣 ∈ 𝑉\𝑆 in 𝑻)
 

Need to make sure we pick an edge 
between 𝑺 and 𝑽\𝑺 on the cycle!
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑻 is a spanning tree that does not include 𝒆. 𝑻 ∪ {𝒆} must have a cycle and that 
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
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MST Cut Property

Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒 
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).

Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.

Suppose 𝑇 is a spanning tree that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that 
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 

Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣
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