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Final Presentation Scheduling

• 12/02, 12/03, 12/11

• Email me if you have restrictions on which days you can present.



APX

VC

NPO

Approximability Hierarchy

Set Cover

PO: Optimization problems 
that can be optimally solved 
in polynomial time.

PO

Shortest Path

?



Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Example:

Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

𝑊 =  11



Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Example:

1, 2, 5 : weight = 10, value = 35
3, 4 : weight = 11, value = 40

4, 5 : weight = 13, value = 50

✓



Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

𝑊 =  11



Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

How could we approach this?
 Greedy?
 ILP?
 Flow Network?
 Dynamic Program?

Item Value Weight

1 11 6

2 11 6

3 20 10

𝑊 = 12



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:
Is there optimal substructure?
 I.e. If I have an optimal solution to some instance, does 

that imply an optimal solution to a different instance?



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:
Is there optimal substructure?
 I.e. If I have an optimal solution to some instance, does 

that imply an optimal solution to a different instance?

E.g. If {item1, item3, item7} is optimal for 
weight of 10, and item3 weighs 3, {item1, 
item7} must be optimal for a weight of 7.

Yes, removing some item must 
give an optimal selection for 

the remaining weight.



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑤) = maximum value achievable for items 
  1, … , 𝑖  and knapsack of capacity 𝑤.



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑤) = maximum value achievable for items 
  1, … , 𝑖  and knapsack of capacity 𝑤.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 : 
  opt(𝑖, 𝑤) = opt(𝑖 − 1, 𝑤)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 ? 
   opt(𝑖, 𝑤) = opt 𝑖 − 1, 𝑤 − 𝑤𝑖 + 𝑣𝑖



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

it
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Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

To find the optimal solution, find 
largest 𝑽 such that opt(𝒏, 𝑽) ≤ 𝑾. 

total 
values Find largest value 

with compatible 
weight.
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Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 : 
  

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 :
  

?

?



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 : 
  opt(𝑖, 𝑉) = opt(𝑖 − 1, 𝑉)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 : 
  



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 : 
  opt(𝑖, 𝑉) = opt(𝑖 − 1, 𝑉)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 : 
  opt(𝑖, 𝑉) = opt 𝑖 − 1, 𝑉 − 𝑣𝑖 + 𝑤𝑖

If item 𝒊 is in the 
optimal solution, 
removing it 
decreases the value 
by 𝒗𝒊 and weight by 
𝒘𝒊. What remains 
must be the 
minimum weight 
whose value is at 
least 𝑽 − 𝒗𝒊.



Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

0          if 𝑉 = 0
∞          if 𝑖 = 0 and 𝑉 > 0

          Otherwise
 

opt 𝑖, 𝑉 = 

min
opt 𝑖 − 1, 𝑉 ,

opt 𝑖 − 1, 𝑉 − 𝑣𝑖 + 𝑤𝑖



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ ? , compute opt 𝑖, 𝑉 .



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

it
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values Find largest value 
with compatible 
weight.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = ? it
em

s

values Find largest value 
with compatible 
weight.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖) it
em

s

values Find largest value 
with compatible 
weight.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

Optimal algorithm that 
does not run in polynomial 
time WRT input size.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

100000
200000
500000

𝑣𝑖



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)
𝑣𝑖

100000
200000
500000

𝑣𝑖

1
2
5



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

100000
200000
500000

𝑣𝑖

1
2
5



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

1
2
5

𝑣𝑖



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

1
2
5

𝑣𝑖

Does this change 
the optimal value 

all that much?



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

163
254
582

𝑣𝑖

Does this change 
the optimal value 

all that much?



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

16388
25430
58224

𝑣𝑖

Does this change 
the optimal value 

all that much?



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items 
  1, … , 𝑖  that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

16388
25430
58224

𝑣𝑖

There seems to be a tradeoff 
that we can control between 
accuracy and running time.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1.  



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

User-supplied approximation 
factor 𝜺 > 𝟎.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

726489
136212
384167

30
5
15

𝜀 = 0.1

726489
136212
384167

3000
562
1586

𝜀 = 0.001

User-supplied approximation 
factor 𝜺 > 𝟎.



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max)



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max) ∈ 𝑂 𝑛2 𝑣max

𝑛

𝜀𝑣max



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max) ∈ 𝑂 𝑛2 𝑣max

𝑛

𝜀𝑣max
∈ 𝑂

𝑛3

𝜀



Knapsack – Algorithm 

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊

How does scaling values impact cost?



Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

Need to relate σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆ALG

𝑣𝑖?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

Need to relate σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆ALG

𝑣𝑖?

But the algorithm operates on 𝑣𝑖
′.

  Need to relate σ𝑖∈𝑆OPT
𝑣𝑖 to σ𝑖∈𝑆OPT

𝑣𝑖
′ to σ𝑖∈𝑆ALG

𝑣𝑖
′ to σ𝑖∈𝑆ALG

𝑣𝑖 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Algorithm:
1. Let 𝑣max = max

𝑖
𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

      

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Algorithm:
1. Let 𝑣max = max

𝑖
𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because?    

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

      

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

      

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

        = OPT 
𝑛

𝜀𝑣max
− 𝑛, because?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

        = OPT 
𝑛

𝜀𝑣max
− 𝑛, because σ𝑖∈𝑆OPT

𝑣𝑖 = OPT

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



Knapsack – Performance 

How does σ𝑖∈𝑆OPT
𝑣𝑖  relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

   σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases <  1

        ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

        = OPT 
𝑛

𝜀𝑣max
− 𝑛, because σ𝑖∈𝑆OPT

𝑣𝑖 = OPT

    So, σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

ALG = σ𝑖∈𝑆ALG
𝑣𝑖



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
, because?

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
, because floor function decreases

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
, because?

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
, because σ𝑖∈𝑆OPT

𝑣𝑖
′ ≤ σ𝑖∈𝑆ALG

𝑣𝑖
′ since 

𝑆ALG is optimal for 𝑣𝑖
′

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
 

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT −  𝜀 OPT, because?

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT −  𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT −  𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)
= (1 − 𝜀) OPT

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.



σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT −  𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)
= (1 − 𝜀) OPT

Knapsack – Performance 

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

So, ALG ≥ (1 − 𝜀) OPT



Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀

Knapsack



Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀
 

Knapsack

We can solve Knapsack instances arbitrarily 
close to optimal in polynomial time!!



Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and 
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination 
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀

Knapsack

Fully Polynomial-Time 
Approximation Scheme 

(FPTAS)We can solve Knapsack instances arbitrarily 
close to optimal in polynomial time!!



APX

VC

NPO

Approximability Hierarchy

Set Cover

PTAS
FPTAS

Knapsack

PO

Shortest Path

PTAS: Running time 
polynomial in input size.

FPTAS: Running time 
polynomial in input size and 𝜀.
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