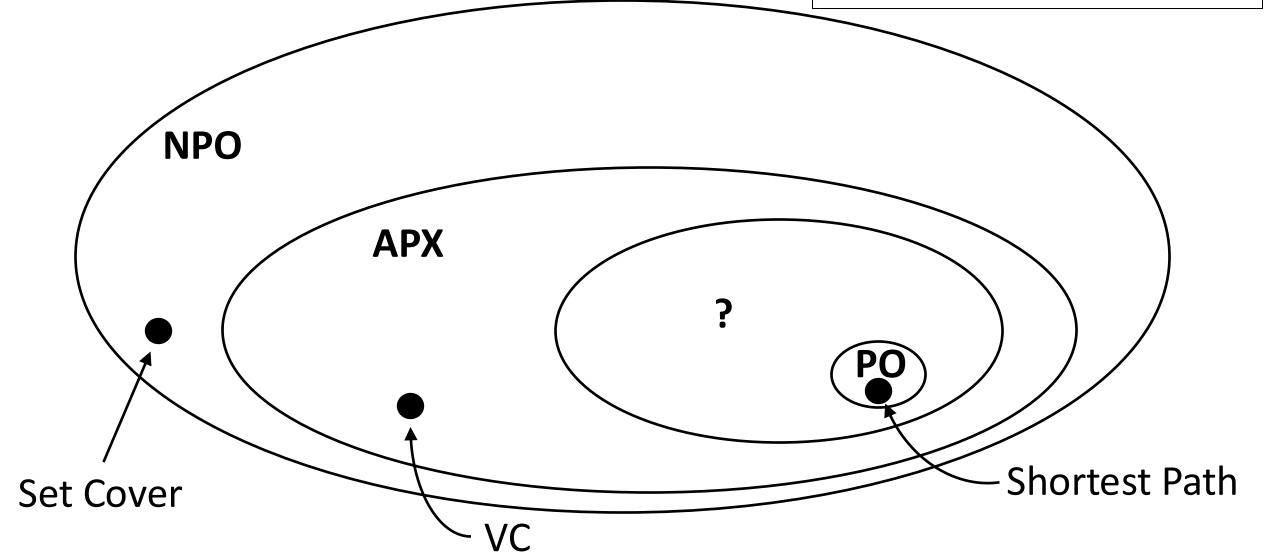
# (F)PTAS CSCI 532

### Final Presentation Scheduling

- 12/02, 12/03, 12/11
- Email me if you have restrictions on which days you can present.

# Approximability Hierarchy

PO: Optimization problems that can be optimally solved in polynomial time.



### Knapsack

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Example:

| W = 11 | Item | Value | Weight |
|--------|------|-------|--------|
|        | 1    | 1     | 1      |
|        | 2    | 6     | 2      |
|        | 3    | 18    | 5      |
|        | 4    | 22    | 6      |
|        | 5    | 28    | 7      |

### Knapsack

Knapsack: Given a set of n items with values  $v_1, \dots, v_n$  and weights  $w_1, \dots, w_n$ , select the most valuable combination with total weight  $\leq W$ .

### Example:

| W = 11 | Item | Value | Weight |
|--------|------|-------|--------|
|        | 1    | 1     | 1      |
|        | 2    | 6     | 2      |
|        | 3    | 18    | 5      |
|        | 4    | 22    | 6      |
|        | 5    | 28    | 7      |

 $\{1, 2, 5\}$ : weight = 10, value = 35  $\{3, 4\}$ : weight = 11, value = 40  $\{4, 5\}$ : weight = 13, value = 50





### Knapsack

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

### Algorithm:

How could we approach this?

Greedy?

ILP?

Flow Network?

**Dynamic Program?** 

| Item | Value | Weight |
|------|-------|--------|
| 1    | 11    | 6      |
| 2    | 11    | 6      |
| 3    | 20    | 10     |

$$W = 12$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Is there optimal substructure?

I.e. If I have an optimal solution to some instance, does that imply an optimal solution to a different instance?

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Is there optimal substructure?

I.e. If I have an optimal solution to some instance, does that imply an optimal solution to a different instance?

Yes, removing some item must give an optimal selection for the remaining weight.

E.g. If {item<sub>1</sub>, item<sub>3</sub>, item<sub>7</sub>} is optimal for weight of 10, and item<sub>3</sub> weighs 3, {item<sub>1</sub>, item<sub>7</sub>} *must* be optimal for a weight of 7.

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Define  $opt(i, w) = maximum value achievable for items <math>\{1, ..., i\}$  and knapsack of capacity w.

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

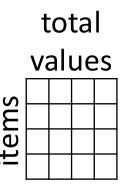
Define  $opt(i, w) = maximum value achievable for items <math>\{1, ..., i\}$  and knapsack of capacity w.

Case 1: If 
$$i$$
 is not in the optimal solution for  $\{1, ..., i\}$ : opt $(i, w)$  = opt $(i - 1, w)$ 

Case 2: If 
$$i$$
 is in the optimal solution for  $\{1, ..., i\}$ ? opt $(i, w) = \text{opt}(i - 1, w - w_i) + v_i$ 

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

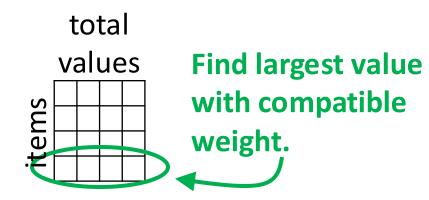
Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Define 
$$opt(i, V) = minimum$$
 weight of subset of items  $\{1, ..., i\}$  that gives value at least  $V$ .

To find the optimal solution, find largest V such that  $opt(n, V) \leq W$ .



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

Case 1: If i is not in the optimal solution for  $\{1, ..., i\}$ :



Case 2: If i is in the optimal solution for  $\{1, ..., i\}$ :



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

Case 1: If i is not in the optimal solution for  $\{1, ..., i\}$ : opt(i, V) = opt(i - 1, V)

Case 2: If i is in the optimal solution for  $\{1, ..., i\}$ :

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

Case 1: If i is not in the optimal solution for  $\{1, ..., i\}$ : opt(i, V) = opt(i - 1, V)

Case 2: If i is in the optimal solution for  $\{1, ..., i\}$ : opt(i, V) = opt $(i - 1, V - v_i) + w_i$ 

If item i is in the optimal solution, removing it decreases the value by  $v_i$  and weight by  $w_i$ . What remains must be the minimum weight whose value is at least  $V - v_i$ .

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

$$\operatorname{opt}(i,V) = \begin{cases} 0 & \text{if } V = 0 \\ \infty & \text{if } i = 0 \text{ and } V > 0 \end{cases}$$

$$\min \begin{pmatrix} \operatorname{opt}(i-1,V), \\ \operatorname{opt}(i-1,V-v_i) + w_i \end{pmatrix} \text{ Otherwise}$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

### Algorithm:

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

1. For  $0 \le i \le n$  and  $0 \le V \le n$ , compute opt(i, V).

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

### Algorithm:

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

1. For  $0 \le i \le n$  and  $0 \le V \le n \max_i v_i$ , compute opt(i, V).

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = ?



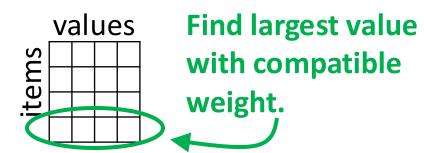
Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

- 1. For  $0 \le i \le n$  and  $0 \le V \le n$  max  $v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time =  $O(n^2 \max_i v_i)$ 



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of items  $\{1, ..., i\}$  that gives value at least V.

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max\{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time =  $O(n^2 \max_i v_i)$ 

Optimal algorithm that does not run in polynomial time WRT input size.

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

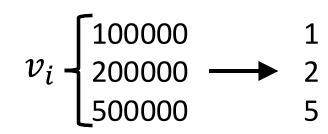
$$v_i = \begin{cases} 100000 \\ 200000 \\ 500000 \end{cases}$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

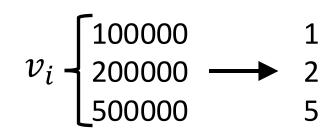


Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$



Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. For  $0 \le i \le n$  and  $0 \le V \le n \max_{i} v_i$ , compute opt(i, V).
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

$$v_i = \begin{cases} 163882 & 1\\ 254301 & \longrightarrow 2\\ 582242 & 5 \end{cases}$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of  $\{1, ..., i\}$  that gives value at lea

Does this change the optimal value all that much?

- 1. For  $0 \le i \le n$  and  $0 \le V \le n$  max  $v_i$ , compute
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

 $v_i = \begin{cases} 163882 & 1\\ 254301 & \longrightarrow \\ 582242 & 5 \end{cases}$ 

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of  $\{1, ..., i\}$  that gives value at lea

Does this change the optimal value all that much?

- 1. For  $0 \le i \le n$  and  $0 \le V \le n$  max  $v_i$ , compute
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

 $v_i = \begin{cases} 163882 & 163 \\ 254301 & \longrightarrow 254 \\ 582242 & 582 \end{cases}$ 

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define opt(i, V) = minimum weight of subset of  $\{1, ..., i\}$  that gives value at lea

Does this change the optimal value all that much?

- 1. For  $0 \le i \le n$  and  $0 \le V \le n$  max  $v_i$ , compute
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time = 
$$O(n^2 \max_i v_i)$$

 $v_i = \begin{cases} 163882 & 16388 \\ 254301 & \hline{\phantom{0}} & 25430 \\ 582242 & 58224 \end{cases}$ 

Knapsack: Given a set of n items with values  $v_1, \dots, v_n$  and weights  $w_1, \dots, w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

Define  $\operatorname{opt}(i,V) = \operatorname{minimum}$  weight of the seems to be a tradeoff that we can control between

- 1. For  $0 \le i \le n$  and  $0 \le V \le n$  max accuracy and running time.
- 2. Return  $V^* = \max \{V : \operatorname{opt}(i, V) \leq W\}$ .

Running Time =  $O(n^2 \max_i v_i)$ 

$$v_i = \begin{cases} 163882 & 16388 \\ 254301 & \longrightarrow 25430 \\ 582242 & 58224 \end{cases}$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Algorithm:

1.

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

1. Let 
$$v_{\text{max}} = \max_{i} v_i$$

Knapsack: Given a set of n items with values  $v_1, \dots, v_n$  and weights  $w_1, \dots, w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. Let  $v_{\max} = \max_{i} v_{i}$ 2. For each i, let  $v'_{i} = \left\lfloor v_{i} \frac{n}{\varepsilon v_{\max}} \right\rfloor$

**User-supplied approximation** factor  $\varepsilon > 0$ .

Knapsack: Given a set of n items with values  $v_1, \dots, v_n$  and weights  $w_1, \dots, w_n$ , select the most valuable combination with total weight  $\leq W$ .

### Algorithm:

1. Let 
$$v_{\text{max}} = \max_{i} v_i$$

1. Let 
$$v_{\max} = \max_{i} v_{i}$$
  
2. For each  $i$ , let  $v'_{i} = \left\lfloor v_{i} \frac{n}{\varepsilon v_{\max}} \right\rfloor$ 

726489 
$$\varepsilon = 0.1$$
 30  
136212  $\longrightarrow$  5  
384167 15

726489 
$$\varepsilon = 0.001$$
 3000 304167  $\varepsilon = 0.001$  1586

**User-supplied approximation** factor  $\varepsilon > 0$ .

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

- 1. Let  $v_{\text{max}} = \max_{i} v_i$
- 2. For each i, let  $v_i' = \left\lfloor v_i \frac{n}{\varepsilon v_{\max}} \right\rfloor$
- 3. Run dynamic programming algorithm using  $\{v_i'\}$ ,  $\{w_i\}$ , W

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

- 1. Let  $v_{\text{max}} = \max_{i} v_i$
- 2. For each i, let  $v_i' = \left[ v_i \frac{n}{\varepsilon v_{\text{max}}} \right]$
- 3. Run dynamic programming algorithm using  $\{v_i'\}$ ,  $\{w_i\}$ , W

Running Time = 
$$O(n^2v'_{\text{max}})$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

- 1. Let  $v_{\text{max}} = \max_{i} v_i$
- 2. For each i, let  $v_i' = \left\lfloor v_i \frac{n}{\varepsilon v_{\max}} \right\rfloor$
- 3. Run dynamic programming algorithm using  $\{v_i'\}$ ,  $\{w_i\}$ , W

Running Time = 
$$O(n^2 v'_{\text{max}}) \in O\left(n^2 \left\lfloor v_{\text{max}} \frac{n}{\varepsilon v_{\text{max}}} \right\rfloor\right)$$

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

- 1. Let  $v_{\text{max}} = \max_{i} v_i$
- 2. For each i, let  $v_i' = \left[ v_i \frac{n}{\varepsilon v_{\text{max}}} \right]$
- 3. Run dynamic programming algorithm using  $\{v_i'\}$ ,  $\{w_i\}$ , W

Running Time = 
$$O(n^2 v'_{\text{max}}) \in O\left(n^2 \left[v_{\text{max}} \frac{n}{\varepsilon v_{\text{max}}}\right]\right) \in O\left(\frac{n^3}{\varepsilon}\right)$$

Knapsack: Given a set of n items with values  $v_1, \dots, v_n$  and weights  $w_1, \dots, w_n$ , select the most valuable combination with total weight  $\leq W$ .

#### Algorithm:

- 1. Let  $v_{\max} = \max_{i} v_{i}$ 2. For each i, let  $v'_{i} = \left[v_{i} \frac{n}{\varepsilon v_{\max}}\right]$
- 3. Run dynamic programming algorithm using  $\{v_i'\}, \{w_i\}, W$

How does scaling values impact cost?

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

Need to relate  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  relate to  $\sum_{i \in S_{\mathsf{ALG}}} v_i$ ?

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

Need to relate  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  relate to  $\sum_{i \in S_{\mathsf{ALG}}} v_i$ ?

But the algorithm operates on  $v_i'$ .

Need to relate  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  to  $\sum_{i \in S_{\mathsf{OPT}}} v_i'$  to  $\sum_{i \in S_{\mathsf{ALG}}} v_i'$  to  $\sum_{i \in S_{\mathsf{ALG}}} v_i$ 

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

How does  $\sum_{i \in S_{OPT}} v_i$  relate to  $\sum_{i \in S_{OPT}} v'_i$ ?

- 1. Let  $v_{\max} = \max_{i} v_{i}$ 2. For each i, let  $v'_{i} = \left\lfloor v_{i} \frac{n}{\varepsilon v_{\max}} \right\rfloor$
- 3. Run dynamic programming algorithm using  $\{v_i'\}, \{w_i\}, W$

 $S_{AIG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

How does  $\sum_{i \in S_{OPT}} v_i$  relate to  $\sum_{i \in S_{OPT}} v_i'$ ?

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' = \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right]$$

- 1. Let  $v_{\max} = \max_{i} v_{i}$ 2. For each i, let  $v'_{i} = \left\lfloor v_{i} \frac{n}{\varepsilon v_{\max}} \right\rfloor$
- 3. Run dynamic programming algorithm using  $\{v_i'\}, \{w_i\}, W$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

How does  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  relate to  $\sum_{i \in S_{\mathsf{OPT}}} v_i'$ ?

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right), \, \mathsf{because?} \end{split}$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \\ &\geq \left( \sum_{i \in S_{\mathsf{OPT}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right) - n \text{, because?} \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \\ &\geq \left( \sum_{i \in S_{\mathsf{OPT}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right) - n \text{, because } |S_{\mathsf{OPT}}| \leq n \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

How does  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  relate to  $\sum_{i \in S_{\mathsf{OPT}}} v_i'$ ?

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \\ &\geq \left( \sum_{i \in S_{\mathsf{OPT}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right) - n \text{, because } |S_{\mathsf{OPT}}| \leq n \\ &= \mathsf{OPT} \frac{n}{\varepsilon v_{\mathsf{max}}} - n \text{, because} \end{aligned}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

How does  $\sum_{i \in S_{\mathsf{OPT}}} v_i$  relate to  $\sum_{i \in S_{\mathsf{OPT}}} v_i'$ ?

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \\ &\geq \left( \sum_{i \in S_{\mathsf{OPT}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right) - n \text{, because } |S_{\mathsf{OPT}}| \leq n \\ &= \mathsf{OPT} \frac{n}{\varepsilon v_{\mathsf{max}}} - n \text{, because } \sum_{i \in S_{\mathsf{OPT}}} v_i = \mathsf{OPT} \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\begin{split} \sum_{i \in S_{\mathsf{OPT}}} v_i' &= \sum_{i \in S_{\mathsf{OPT}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} \left( v_i \frac{n}{\varepsilon v_{\mathsf{max}}} - 1 \right) \text{, because floor decreases} < 1 \\ &\geq \left( \sum_{i \in S_{\mathsf{OPT}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right) - n \text{, because } |S_{\mathsf{OPT}}| \leq n \\ &= \mathsf{OPT} \frac{n}{\varepsilon v_{\mathsf{max}}} - n \text{, because } \sum_{i \in S_{\mathsf{OPT}}} v_i = \mathsf{OPT} \end{split}$$

So, 
$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$ALG = \sum_{i \in S_{ALG}} v_i$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$ALG = \sum_{i \in S_{ALG}} v_i = \sum_{i \in S_{ALG}} v_i \frac{n}{\varepsilon v_{\max}} \frac{\varepsilon v_{\max}}{n}$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{aligned} \text{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n}, \text{ because?} \end{aligned}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{aligned} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n}, \text{ because floor function decreases} \end{aligned}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$ALG = \sum_{i \in S_{ALG}} v_i = \sum_{i \in S_{ALG}} v_i \frac{n}{\varepsilon v_{\text{max}}} \frac{\varepsilon v_{\text{max}}}{n}$$

$$\geq \sum_{i \in S_{ALG}} \left[ v_i \frac{n}{\varepsilon v_{\text{max}}} \right] \frac{\varepsilon v_{\text{max}}}{n} = \sum_{i \in S_{ALG}} v_i' \frac{\varepsilon v_{\text{max}}}{n}$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

ALG = 
$$\sum_{i \in S_{ALG}} v_i = \sum_{i \in S_{ALG}} v_i \frac{n}{\varepsilon v_{\text{max}}} \frac{\varepsilon v_{\text{max}}}{n}$$
  
 $\geq \sum_{i \in S_{ALG}} \left[ v_i \frac{n}{\varepsilon v_{\text{max}}} \right] \frac{\varepsilon v_{\text{max}}}{n} = \sum_{i \in S_{ALG}} v_i' \frac{\varepsilon v_{\text{max}}}{n}$   
 $\geq \sum_{i \in S_{OPT}} v_i' \frac{\varepsilon v_{\text{max}}}{n}$ , because?

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{split} \text{ALG} &= \sum_{i \in S_{\text{ALG}}} v_i = \sum_{i \in S_{\text{ALG}}} v_i \frac{n}{\varepsilon v_{\text{max}}} \frac{\varepsilon v_{\text{max}}}{n} \\ &\geq \sum_{i \in S_{\text{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\text{max}}} \right] \frac{\varepsilon v_{\text{max}}}{n} = \sum_{i \in S_{\text{ALG}}} v_i' \frac{\varepsilon v_{\text{max}}}{n} \\ &\geq \sum_{i \in S_{\text{OPT}}} v_i' \frac{\varepsilon v_{\text{max}}}{n}, \text{ because } \sum_{i \in S_{\text{OPT}}} v_i' \leq \sum_{i \in S_{\text{ALG}}} v_i' \text{ since } \\ &S_{\text{ALG}} \text{ is optimal for } v_i' \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{aligned} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq \left( \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n \right) \frac{\varepsilon v_{\mathsf{max}}}{n} \end{aligned}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{aligned} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq (\mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n) \frac{\varepsilon v_{\mathsf{max}}}{n} = \mathsf{OPT} - \varepsilon v_{\mathsf{max}} \end{aligned}$$

 $S_{\rm ALG}$  = Set of algorithm selected items.  $S_{\rm OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{split} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq (\mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n) \frac{\varepsilon v_{\mathsf{max}}}{n} = \mathsf{OPT} - \varepsilon v_{\mathsf{max}} \\ &\geq \mathsf{OPT} - \varepsilon \, \mathsf{OPT}, \, \mathsf{because?} \end{split}$$

 $S_{\mathsf{ALG}}$  = Set of algorithm selected items.  $S_{\mathsf{OPT}}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{split} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq \left( \mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n \right) \frac{\varepsilon v_{\mathsf{max}}}{n} = \mathsf{OPT} - \varepsilon v_{\mathsf{max}} \\ &\geq \mathsf{OPT} - \varepsilon \, \mathsf{OPT}, \, \mathsf{because} \, \mathsf{OPT} \geq v_{\mathsf{max}} \, (\mathsf{discard} \, \mathsf{overweight} \, \mathsf{items}) \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{split} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq (\mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n) \frac{\varepsilon v_{\mathsf{max}}}{n} = \mathsf{OPT} - \varepsilon v_{\mathsf{max}} \\ &\geq \mathsf{OPT} - \varepsilon \, \mathsf{OPT}, \, \mathsf{because} \, \mathsf{OPT} \geq v_{\mathsf{max}} \, \, (\mathsf{discard} \, \mathsf{overweight} \, \mathsf{items}) \\ &= (1 - \varepsilon) \, \mathsf{OPT} \end{split}$$

 $S_{ALG}$  = Set of algorithm selected items.  $S_{OPT}$  = Set of optimal items.

$$\sum_{i \in S_{\mathsf{OPT}}} v_i' \ge \mathsf{OPT} \; \frac{n}{\varepsilon v_{\mathsf{max}}} - n$$

$$\begin{split} \mathsf{ALG} &= \sum_{i \in S_{\mathsf{ALG}}} v_i = \sum_{i \in S_{\mathsf{ALG}}} v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{ALG}}} \left[ v_i \frac{n}{\varepsilon v_{\mathsf{max}}} \right] \frac{\varepsilon v_{\mathsf{max}}}{n} = \sum_{i \in S_{\mathsf{ALG}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \\ &\geq \sum_{i \in S_{\mathsf{OPT}}} v_i' \frac{\varepsilon v_{\mathsf{max}}}{n} \geq (\mathsf{OPT} \, \frac{n}{\varepsilon v_{\mathsf{max}}} - n) \frac{\varepsilon v_{\mathsf{max}}}{n} = \mathsf{OPT} - \varepsilon v_{\mathsf{max}} \\ &\geq \mathsf{OPT} - \varepsilon \, \mathsf{OPT}, \, \mathsf{because} \, \mathsf{OPT} \geq v_{\mathsf{max}} \, \, (\mathsf{discard} \, \mathsf{overweight} \, \mathsf{items}) \\ &= (1 - \varepsilon) \, \mathsf{OPT} \end{split}$$

So, ALG 
$$\geq (1 - \varepsilon)$$
 OPT

# Knapsack

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Performance Guarantee: ALG  $\geq (1 - \varepsilon)$  OPT

Running Time:  $O\left(\frac{n^3}{\varepsilon}\right)$ 

#### Knapsack

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Performance Guarantee: ALG  $\geq (1 - \varepsilon)$  OPT

Running Time:  $O\left(\frac{n^3}{\varepsilon}\right)$ 

We can solve Knapsack instances arbitrarily close to optimal in polynomial time!!

#### Knapsack

Knapsack: Given a set of n items with values  $v_1, ..., v_n$  and weights  $w_1, ..., w_n$ , select the most valuable combination with total weight  $\leq W$ .

Performance Guarantee: ALG  $\geq (1 - \varepsilon)$  OPT

Running Time:  $O\left(\frac{n^3}{\varepsilon}\right)$ 

We can solve Knapsack instances arbitrarily close to optimal in polynomial time!!

Fully Polynomial-Time
Approximation Scheme
(FPTAS)

