
(F)PTAS
CSCI 532

Final Presentation Scheduling

• 12/02, 12/03, 12/11

• Email me if you have restrictions on which days you can present.

APX

VC

NPO

Approximability Hierarchy

Set Cover

PO: Optimization problems
that can be optimally solved
in polynomial time.

PO

Shortest Path

?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Example:

Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

𝑊 = 11

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Example:

1, 2, 5 : weight = 10, value = 35
3, 4 : weight = 11, value = 40

4, 5 : weight = 13, value = 50

✓



Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

𝑊 = 11

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

How could we approach this?
 Greedy?
 ILP?
 Flow Network?
 Dynamic Program?

Item Value Weight

1 11 6

2 11 6

3 20 10

𝑊 = 12

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:
Is there optimal substructure?
 I.e. If I have an optimal solution to some instance, does

that imply an optimal solution to a different instance?

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:
Is there optimal substructure?
 I.e. If I have an optimal solution to some instance, does

that imply an optimal solution to a different instance?

E.g. If {item1, item3, item7} is optimal for
weight of 10, and item3 weighs 3, {item1,
item7} must be optimal for a weight of 7.

Yes, removing some item must
give an optimal selection for

the remaining weight.

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑤) = maximum value achievable for items
 1, … , 𝑖 and knapsack of capacity 𝑤.

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑤) = maximum value achievable for items
 1, … , 𝑖 and knapsack of capacity 𝑤.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 :
 opt(𝑖, 𝑤) = opt(𝑖 − 1, 𝑤)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 ?
 opt(𝑖, 𝑤) = opt 𝑖 − 1, 𝑤 − 𝑤𝑖 + 𝑣𝑖

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

it
em

s

total
values

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

To find the optimal solution, find
largest 𝑽 such that opt(𝒏, 𝑽) ≤ 𝑾.

total
values Find largest value

with compatible
weight.

it
em

s

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 :

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 :

?

?

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 :
 opt(𝑖, 𝑉) = opt(𝑖 − 1, 𝑉)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 :

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

Case 1: If 𝑖 is not in the optimal solution for 1, … , 𝑖 :
 opt(𝑖, 𝑉) = opt(𝑖 − 1, 𝑉)

Case 2: If 𝑖 is in the optimal solution for 1, … , 𝑖 :
 opt(𝑖, 𝑉) = opt 𝑖 − 1, 𝑉 − 𝑣𝑖 + 𝑤𝑖

If item 𝒊 is in the
optimal solution,
removing it
decreases the value
by 𝒗𝒊 and weight by
𝒘𝒊. What remains
must be the
minimum weight
whose value is at
least 𝑽 − 𝒗𝒊.

Knapsack – Dynamic Programming

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

0 if 𝑉 = 0
∞ if 𝑖 = 0 and 𝑉 > 0

 Otherwise

opt 𝑖, 𝑉 =

min
opt 𝑖 − 1, 𝑉 ,

opt 𝑖 − 1, 𝑉 − 𝑣𝑖 + 𝑤𝑖

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ ? , compute opt 𝑖, 𝑉 .

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

it
em

s

values Find largest value
with compatible
weight.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = ? it
em

s

values Find largest value
with compatible
weight.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖) it
em

s

values Find largest value
with compatible
weight.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

Optimal algorithm that
does not run in polynomial
time WRT input size.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

100000
200000
500000

𝑣𝑖

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)
𝑣𝑖

100000
200000
500000

𝑣𝑖

1
2
5

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

100000
200000
500000

𝑣𝑖

1
2
5

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

1
2
5

𝑣𝑖

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

1
2
5

𝑣𝑖

Does this change
the optimal value

all that much?

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

163
254
582

𝑣𝑖

Does this change
the optimal value

all that much?

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

16388
25430
58224

𝑣𝑖

Does this change
the optimal value

all that much?

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

Define opt(𝑖, 𝑉) = minimum weight of subset of items
 1, … , 𝑖 that gives value at least 𝑉.

1. For 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑉 ≤ 𝑛 max
𝑖

𝑣𝑖, compute opt 𝑖, 𝑉 .

2. Return 𝑉∗ = max {𝑉: opt 𝑖, 𝑉 ≤ 𝑊}.

Running Time = 𝑂(𝑛2 max
𝑖

𝑣𝑖)

163882
254301
582242

16388
25430
58224

𝑣𝑖

There seems to be a tradeoff
that we can control between
accuracy and running time.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

User-supplied approximation
factor 𝜺 > 𝟎.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

726489
136212
384167

30
5
15

𝜀 = 0.1

726489
136212
384167

3000
562
1586

𝜀 = 0.001

User-supplied approximation
factor 𝜺 > 𝟎.

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max)

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max) ∈ 𝑂 𝑛2 𝑣max

𝑛

𝜀𝑣max

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using {𝑣𝑖
′}, {𝑤𝑖}, 𝑊

Running Time = 𝑂(𝑛2𝑣′
max) ∈ 𝑂 𝑛2 𝑣max

𝑛

𝜀𝑣max
∈ 𝑂

𝑛3

𝜀

Knapsack – Algorithm

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm:

1. Let 𝑣max = max
𝑖

𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊

How does scaling values impact cost?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

Need to relate σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆ALG

𝑣𝑖?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

Need to relate σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆ALG

𝑣𝑖?

But the algorithm operates on 𝑣𝑖
′.

 Need to relate σ𝑖∈𝑆OPT
𝑣𝑖 to σ𝑖∈𝑆OPT

𝑣𝑖
′ to σ𝑖∈𝑆ALG

𝑣𝑖
′ to σ𝑖∈𝑆ALG

𝑣𝑖

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Algorithm:
1. Let 𝑣max = max

𝑖
𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Algorithm:
1. Let 𝑣max = max

𝑖
𝑣𝑖

2. For each 𝑖, let 𝑣𝑖
′ = 𝑣𝑖

𝑛

𝜀𝑣max

3. Run dynamic programming algorithm using 𝑣𝑖
′ , {𝑤𝑖}, 𝑊

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

 = OPT
𝑛

𝜀𝑣max
− 𝑛, because?

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

 = OPT
𝑛

𝜀𝑣max
− 𝑛, because σ𝑖∈𝑆OPT

𝑣𝑖 = OPT

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

Knapsack – Performance

How does σ𝑖∈𝑆OPT
𝑣𝑖 relate to σ𝑖∈𝑆OPT

𝑣𝑖
′?

 σ𝑖∈𝑆OPT
𝑣𝑖

′ = σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 1 , because floor decreases < 1

 ≥ σ𝑖∈𝑆OPT
𝑣𝑖

𝑛

𝜀𝑣max
− 𝑛, because |𝑆OPT| ≤ 𝑛

 = OPT
𝑛

𝜀𝑣max
− 𝑛, because σ𝑖∈𝑆OPT

𝑣𝑖 = OPT

 So, σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

ALG = σ𝑖∈𝑆ALG
𝑣𝑖

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
, because?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
, because floor function decreases

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
, because?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
, because σ𝑖∈𝑆OPT

𝑣𝑖
′ ≤ σ𝑖∈𝑆ALG

𝑣𝑖
′ since

𝑆ALG is optimal for 𝑣𝑖
′

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT − 𝜀 OPT, because?

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT − 𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT − 𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)
= (1 − 𝜀) OPT

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

σ𝑖∈𝑆OPT
𝑣𝑖

′ ≥ OPT
𝑛

𝜀𝑣max
− 𝑛

How does ALG = σ𝑖∈𝑆ALG
𝑣𝑖 relate to OPT = σ𝑖∈𝑆OPT

𝑣𝑖?

ALG = σ𝑖∈𝑆ALG
𝑣𝑖 = σ𝑖∈𝑆ALG

𝑣𝑖
𝑛

𝜀𝑣max

𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆ALG
𝑣𝑖

𝑛

𝜀𝑣max

𝜀𝑣max

𝑛
= σ𝑖∈𝑆ALG

𝑣𝑖
′ 𝜀𝑣max

𝑛

≥ σ𝑖∈𝑆OPT
𝑣𝑖

′ 𝜀𝑣max

𝑛
≥ (OPT

𝑛

𝜀𝑣max
− 𝑛)

𝜀𝑣max

𝑛
= OPT − 𝜀𝑣max

≥ OPT − 𝜀 OPT, because OPT ≥ 𝑣max (discard overweight items)
= (1 − 𝜀) OPT

Knapsack – Performance

𝑆ALG = Set of algorithm selected items. 𝑆OPT = Set of optimal items.

So, ALG ≥ (1 − 𝜀) OPT

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀

Knapsack

We can solve Knapsack instances arbitrarily
close to optimal in polynomial time!!

Knapsack: Given a set of 𝑛 items with values 𝑣1, … , 𝑣𝑛 and
weights 𝑤1, … , 𝑤𝑛, select the most valuable combination
with total weight ≤ 𝑊.

Performance Guarantee: ALG ≥ (1 − 𝜀) OPT

Running Time: 𝑂
𝑛3

𝜀

Knapsack

Fully Polynomial-Time
Approximation Scheme

(FPTAS)We can solve Knapsack instances arbitrarily
close to optimal in polynomial time!!

APX

VC

NPO

Approximability Hierarchy

Set Cover

PTAS
FPTAS

Knapsack

PO

Shortest Path

PTAS: Running time
polynomial in input size.

FPTAS: Running time
polynomial in input size and 𝜀.

	Slide 1: (F)PTAS CSCI 532
	Slide 2: Final Presentation Scheduling
	Slide 3: Approximability Hierarchy
	Slide 4: Knapsack
	Slide 5: Knapsack
	Slide 6: Knapsack
	Slide 7: Knapsack – Dynamic Programming
	Slide 8: Knapsack – Dynamic Programming
	Slide 9: Knapsack – Dynamic Programming
	Slide 10: Knapsack – Dynamic Programming
	Slide 11: Knapsack – Dynamic Programming
	Slide 12: Knapsack – Dynamic Programming
	Slide 13: Knapsack – Dynamic Programming
	Slide 14: Knapsack – Dynamic Programming
	Slide 15: Knapsack – Dynamic Programming
	Slide 16: Knapsack – Dynamic Programming
	Slide 17: Knapsack – Dynamic Programming
	Slide 18: Knapsack – Algorithm
	Slide 19: Knapsack – Algorithm
	Slide 20: Knapsack – Algorithm
	Slide 21: Knapsack – Algorithm
	Slide 22: Knapsack – Algorithm
	Slide 23: Knapsack – Algorithm
	Slide 24: Knapsack – Algorithm
	Slide 25: Knapsack – Algorithm
	Slide 26: Knapsack – Algorithm
	Slide 27: Knapsack – Algorithm
	Slide 28: Knapsack – Algorithm
	Slide 29: Knapsack – Algorithm
	Slide 30: Knapsack – Algorithm
	Slide 31: Knapsack – Algorithm
	Slide 32: Knapsack – Algorithm
	Slide 33: Knapsack – Algorithm
	Slide 34: Knapsack – Algorithm
	Slide 35: Knapsack – Algorithm
	Slide 36: Knapsack – Algorithm
	Slide 37: Knapsack – Algorithm
	Slide 38: Knapsack – Algorithm
	Slide 39: Knapsack – Algorithm
	Slide 40: Knapsack – Algorithm
	Slide 41: Knapsack – Algorithm
	Slide 42: Knapsack – Performance
	Slide 43: Knapsack – Performance
	Slide 44: Knapsack – Performance
	Slide 45: Knapsack – Performance
	Slide 46: Knapsack – Performance
	Slide 47: Knapsack – Performance
	Slide 48: Knapsack – Performance
	Slide 49: Knapsack – Performance
	Slide 50: Knapsack – Performance
	Slide 51: Knapsack – Performance
	Slide 52: Knapsack – Performance
	Slide 53: Knapsack – Performance
	Slide 54: Knapsack – Performance
	Slide 55: Knapsack – Performance
	Slide 56: Knapsack – Performance
	Slide 57: Knapsack – Performance
	Slide 58: Knapsack – Performance
	Slide 59: Knapsack – Performance
	Slide 60: Knapsack – Performance
	Slide 61: Knapsack – Performance
	Slide 62: Knapsack – Performance
	Slide 63: Knapsack – Performance
	Slide 64: Knapsack – Performance
	Slide 65: Knapsack – Performance
	Slide 66: Knapsack – Performance
	Slide 67: Knapsack – Performance
	Slide 68: Knapsack – Performance
	Slide 69: Knapsack – Performance
	Slide 70: Knapsack
	Slide 71: Knapsack
	Slide 72: Knapsack
	Slide 73: Approximability Hierarchy

