(F)PTAS
CSCl 532

Final Presentation Scheduling

¢ 12/02,12/03, 12/11
* Email me if you have restrictions on which days you can present.

, . . PO: Optimization problems
ApprOX| Mmad bl|lty Hiera rchy that can be optimally solved

in polynomial time.

NPO
APX
2
‘ H
o &
Set Cover Shortest Path

VC

Knapsack

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Example:
ltem | Value | Weight
1 1 1
w=11 [2] 6 2
3 18 5
4 22 6
5 28 7/

Knapsack

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Example:
ltem | Value | Weight
1 1 1 {1,2,5}: weight = 10, value = 35
W = 11 2 6 2 {3,4}: weight =11, value = 40
3 18 5
A 27 6 {4,5}: weight = 13, value = 50
5 28 7/

v
X

Knapsack

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

ltem | Value | Weight

How could we approach this?
1 | 11 6

Greedy?
2 | 11 6

ILP?
3 | 20 10

Flow Network?
Dynamic Program? W =12

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
Is there optimal substructure?
l.e. If | have an optimal solution to some instance, does

that imply an optimal solution to a different instancef?

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Is there optimal substructure?
l.e. If | have an optimal solution to some instance, does

that imply an optimal solution to a different instance?

Yes, removing some item must
give an optimal selection for
the remaining weight.

E.g. If {itemy, item,, item-} is optimal for
weight of 10, and item; weighs 3, {item,,
item-} must be optimal for a weight of 7.

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, w) = maximum value achievable for items
{1, ...,i} and knapsack of capacity w.

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, w) = maximum value achievable for items
{1, ...,i} and knapsack of capacity w.

Case 1: If i is not in the optimal solution for {1, ..., i}:
opt(i,w) =opt(i — 1,w)

Case 2: If i is in the optimal solution for {1, ..., i}?
opt(i,w) =opt(i — 1,w — w;) + v;

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

total
values

items

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Define opt(i, V) = minimum weight of subset of items

{1, ...,1} that gives value at least V.

To find the optimal solution, find
largest V such that opt(n, V) < W.

items

total
values

Find largest value
with compatible
weight.

-/

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

Case 1: If i is not in the optimal solution for {1, ..., i}:

?

Case 2: If i is in the optimal solution for {1, ..., i}:
?

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

Case 1: If i is not in the optimal solution for {1, ..., i}:
opt(i,V)=opt(i —1,V)

Case 2: If i is in the optimal solution for {1, ..., i}:

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

Case 1: If i is not in the optimal solution for {1, ..., i}:
opt(i,V)=opt(i —1,V)

Case 2: If i is in the optimal solution for {1, ..., i}:
opt(i,V)=opt(i — 1,V —v;) + w;

Ifitemiisinthe
optimal solution,
removing it
decreases the value
by v; and weight by
w;. What remains
must be the
minimum weight
whose value is at
least V — v;.

Knapsack — Dynamic Programming

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Define opt(i, V) = minimum weight of subset of items
{1, ...,1} that gives value at least V.

0 ifV =0
opt(i,V) = < ifi=0andV >0

min (opt(i —1,V),) Herwi

\ opt(i — 1,V —v;) + w; Otherwise

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < ? , compute opt(i, V).

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}.

items

values

Find largest value
with compatible
weight.

-/

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}.

Running Time =7?

items

values

Find largest value
with compatible
weight.

-/

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}.

Running Time = O(n2 max v;)
l

items

values

Find largest value
with compatible
weight.

-/

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. ReturnV* = max {V: opt(i,V) < W}. optimal algorithm that
does not run in polynomial
Running Time = 0 (n” max v;) time WRT input size.

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V: opt(i,V) < W} "100000
Vi 4 200000

Running Time = 0 (n* max v;) | 500000
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}. ~100000 1
Vi 4200000 —» 2

Running Time = 0 (n* max v;) | 500000 5
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}. ~100000 1
Vi 4200000 —» 2

Running Time = 0 (n* max v;) | 500000 5
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of items
{1, ..., 1} that gives value at least V.

1. For0<i<nand0 <V < nmaxv;, compute opt(i,V).
l

2. Return V* = max {V:opt(i,V) < W}. ~163882 1
Vi 4 254301 —» 2

Running Time = 0 (n* max v;) 582242 5
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of Does this change
(1, ..., i} that gives value at leg ., | optimal value

1. ForO0<i<nand0 <V <nmaxv;, compul allthat much?
l

2. Return V* = max {V:opt(i,V) < W}. ~163882 1
Vi 4 254301 —» 2

Running Time = 0 (n* max v;) 582242 5
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of Does this change
(1, ..., i} that gives value at leg ., | optimal value

1. ForO0<i<nand0 <V <nmaxv;, compul allthat much?
l

2. Return V* = max {V:opt(i,V) < W}. "163832 163
Vi 4 254301 —» 254

Running Time = 0 (n* max v;) 582242 582
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

Define opt(i, V) = minimum weight of subset of Does this change
(1, ..., i} that gives value at leg ., | optimal value

1. ForO0<i<nand0 <V <nmaxv;, compul allthat much?
l

2. Return V* = max {V:opt(i,V) < W}. 163882 16388
V; 4 254301 —» 25430

Running Time = 0 (n* max v;) 582242 58224
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
Define opt(i, V) = rq'”'mlfmr\]’ve'g_ht 9 There seems to be a tradeoff
t1, ..., i} that gives that we can control between

1. For0<i<nand0 <V <nmay accuracy and running time.
l

2. Return V* = max {V:opt(i,V) < W}. "163832 16388
V; 4 254301 —» 25430

Running Time = 0 (n* max v;) 582242 58224
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1.

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l

2. Foreachi,letv; = {vi@vn ‘
max

User-supplied approximation J

factor € > 0.

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

1. Let vy ax = Maxv;
l

2. Foreachi,letv; = {vi @vn
max

User-supplied approximation j

factor € > 0.

|

7264389 - _p1 30
136212 » 5
384167 15

726489 . _ 501 3000
136212 » 562
384167 1586

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l
2. Foreachi,letv; = {vi -
€Vmax-

3. Run dynamic programming algorithm using {v;}, {w;}, W

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l
2. Foreachi,letv; = {vi -
€Vmax-

3. Run dynamic programming algorithm using {v;}, {w;}, W

Running Time = 0 (n?v' 1a%)

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l
2. Foreachi,letv; = {vi -
€Vmax-

3. Run dynamic programming algorithm using {v;}, {w;}, W

Running Time = 0(n?v' a¢) € O (nz lvmax . ‘)

€Vmax

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:
1. Let vy ax = Maxv;
l
2. Foreachi,letv; = {vi -
€Vmax-

3. Run dynamic programming algorithm using {v;}, {w;}, W

Running Time = 0(n%v' ,4) € O (nz {vmax . ‘) €0 (n;)

€Vmax

Knapsack — Algorithm

Knapsack: Given a set of n items with values v4, ..., v,, and
weights wy, ..., w,,, select the most valuable combination

with total weight < /.

Algorithm:

1. Let vy ax = Maxv;
l
n

2. Foreachi,letv; = {vi -
3. Run dynamic programming algorithm using {vi’}, fw;}, W

How does scaling values impact cost?

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

Need to relate),;es Vi relate to X, ;?

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

Need to relate),;es Vi relate to X, ;?

But the algorithm operates on v;.

Need to relate),;es Vi to),

! !/
Vi 10 Njes, Vi tO X V;

LESopT LESALG

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.
!
How does),;es . Vs relate to X ;7

I n
ZiESOPT Vi = ZiESOPT {Vi ‘

€Vmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

I n
ZiESOPT Vi = ZiESOPT {Vi ‘

€Vmax

(vi & —1), because?

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

I n
ZiESOPT Vi = ZiESOPT {Vi ‘

€Vmax

(vi — 1), because floor decreases < 1

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

I n
ZiESOPT Vi = ZiESOPT {Vi ‘

€Vmax

(vi — 1), because floor decreases < 1

) — n, because?

€Vmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

n
ZlESOPT [= ZlESOPT{ l ‘

€Vmax
n
> Diies (vi — 1), because floor decreases < 1
OPT EVmax
n
= (ZiESOPT V; evmax) — n, because |Sopr| <1

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

n
ZlESOPT [= ZlESOPT{ l ‘

€Vmax
n
> (v- — 1), because floor decreases < 1
LES l
OPT EVmax
n
= (ZiESOPT V; evmax) — n, because |Sopr| <1
n
= OPT — n, because?

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

I n
ZiESOPT Vi = ZiESOPT {Vi ‘

€Vmax
n
> (v- — 1), because floor decreases < 1
LES l
OPT EVmax
n
= (ZiESOPT V; evmax) — n, because |Sopr| <1
n
= OPT — n, because Yeg Vi = OPT

€Vmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

!
How does),;es . Vs relate to X ;7

n
ZlESOPT [= ZlESOPT{ l ‘

€Vmax
n
> Diies (vi — 1), because floor decreases < 1
OPT EVmax
n
= (ZiESOPT V; evmax) — n, because |Sopr| <1
n
= OPT — n, because Yeg Vi = OPT
€Vmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

2.

v, > 0OPT —— —n

LES
OPT EVmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

v, > 0OPT —— —n

LES
OPT EVmax

2.

How does ALG =),;cs, . V; relate to OPT =) V;?

LESopT

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

> v; = OPT —n

LES
OPT EVmax

How does ALG =),;cs, - V; relate to OPT =), V;?

LESopT
ALG ZI’ESALG L

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

) v; = OPT

LES
OPT EVmax

How does ALG = ZiESALG v; relate to OPT =),

LESopT

—n

Ui?

n EVmax

evmax n

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

) v; = OPT

LES
OPT EVmax

How does ALG = X,;cs, V; relate to OPT =)

LESopT
ALG =). =) V;
i€Sac Vi LESALG ! evpax M

n EV
> Dies { Vi ‘ 42 because?
AGL Yevpaxd n

—n

Ui?

n EVmax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

) v; = OPT

LES
OPT EVmax

How does ALG = X,;cs, V; relate to OPT =)

LESopT

n EV .
> Y. { - ‘ =22 because floor function decreases
LES Ui

—n

Ui?

n EVmax

EVmax n

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7

n EV

AL =Y. . max

G = z:lESALG : z:l€~9ALG Vi EVmax M

n |ev 1 EVmax
> { . ‘ max . .
ZlESALG bevmaxl m ZlESALG Vit

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —]] max
G= z:lESALG z:l€~9ALG Vi EVmax N
n |ev 1 EVmax
> . { . ‘ max . .
- ZlESALG bevmaxl 1 ZlESALG Vit
EV
>). v; —23 hecause?

i€Sopr Vi T p

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
ZLESOPT v O €Vmax "
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —_ . . max
G ZlESALG ZLESALG vl EVmax n
n |ev EVmax
> Ties, e |V —| e =3, .
— Z:lESALG bevmaxl m ZlESALG Vit
Igvmax | A
> Yiesgpr Vi v Decause Yies V; < Nies, Vi since

SaLg is optimal for v;

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —]] max
G= z:lESALG z:l€~9ALG Vi EVmax N
n |ev 1 EVmax
> . { . ‘ max . .
- ZlESALG bevmaxl 1 ZlESALG Vit
EV EV
> Yies o Vi = (OPT —n)— =
OPT n EVmax n

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

ZiESOPTU > OPT —nNn

€Vmax

How does ALG = X,;cs, V; relate to OPT =)

lESOPT vl?

n EVmax

ALG ZlESALG — ZLESALG vl

= ZiESALG {vi EVmax
>y p) =W > (OPT —n)

L' n EVmax n

Svmax n

n ‘ €Vmax __ Z vl €Vmax
n lESALG L n

€Vmax

= OPT — &Vpax

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —]] max
G= z:lESALG z:l€~9ALG Vi EVmax N
n |ev 1 EVmax
> . { . ‘ max . .
- ZlESALG Vi EVmaxd N ZlESALG Vit
EV EV
>y v, —/2 > (OPT —n)—=% = OPT — ¢v
— ZLESOPT L 1 (O £V ax) n O max

> OPT — & OPT, because?

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —]] max
G= z:lESALG z:l€~9ALG Vi EVmax N
n |ev 1 EVmax
> . { . ‘ max . .
- ZlESALG bevmaxl 1 ZlESALG Vit
EV EV
> . ! max > —n max — PT — v
— ZLESOPT Vi n (OPT £V ax) n O max

> OPT — & OPT, because OPT = v, (discard overweight items)

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

. > OPT _
z:lESOPT v; 2O EVmax n
How does ALG =),;cs, U relate to OPT = Xeg V7
n EV
AL —]] max
G= z:lESALG z:l€~9ALG Vi EVmax N
n |ev 1 EVmax
> . { . ‘ max . .
- ZlESALG bevmaxl 1 ZlESALG Vit
EV EV
> . ! max > —n max — PT — v
— ZLESOPT Vi n (OPT £V ax) n O max

> OPT — & OPT, because OPT = v, (discard overweight items)
= (1—¢)OPT

Knapsack — Performance

S = Set of algorithm selected items. S = Set of optimal items.

D v; = OPT

LES
OPT EVmax

How does ALG = X;cq, Vi relate to OPT = ;g

—n

Ui?

n EVmax
= Diesy . Vi
ALG €Vmax N
{ . n ‘ gvmax . Z v{ gvmax
y n lESALG L n
€Vmax

ALG = ¥,

i€SaLG ¥

E€Vmax

> Y p] Zmax > (OpT —n)

n EVmax n
> OPT — & OPT, because OPT = v, (discard overweight items)

= (1—¢)OPT

= OPT — €vpax

So, ALG = (1 — €) OPT

Knapsack

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Performance Guarantee: ALG = (1 — ¢) OPT

3
Running Time: O (n—)

E

Knapsack

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Performance Guarantee: ALG = (1 — ¢) OPT

3
Running Time: O (n—)

E

We can solve Knapsack instances arbitrarily
close to optimal in polynomial time!!

Knapsack

Knapsack: Given a set of n items with values v, ..., v,, and
weights wy, ..., w,,, select the most valuable combination
with total weight < /.

Performance Guarantee: ALG = (1 — ¢) OPT
3
Running Time: 0 (n—)

E

Fully Polynomial-Time

, ~_ Approximation Scheme
We can solve Knapsack instances arbitrarily (FPTAS)

close to optimal in polynomial time!!

: e , PTAS: Running time
ApprOX|mablllty Hiera rChy polynomial in input size.

| FPTAS: Running time
polynomial in input size and &.

NPO
APX
o PTAS
. (&
Set Cover ——— ~—Shortest Path

VC Knapsack

	Slide 1: (F)PTAS CSCI 532
	Slide 2: Final Presentation Scheduling
	Slide 3: Approximability Hierarchy
	Slide 4: Knapsack
	Slide 5: Knapsack
	Slide 6: Knapsack
	Slide 7: Knapsack – Dynamic Programming
	Slide 8: Knapsack – Dynamic Programming
	Slide 9: Knapsack – Dynamic Programming
	Slide 10: Knapsack – Dynamic Programming
	Slide 11: Knapsack – Dynamic Programming
	Slide 12: Knapsack – Dynamic Programming
	Slide 13: Knapsack – Dynamic Programming
	Slide 14: Knapsack – Dynamic Programming
	Slide 15: Knapsack – Dynamic Programming
	Slide 16: Knapsack – Dynamic Programming
	Slide 17: Knapsack – Dynamic Programming
	Slide 18: Knapsack – Algorithm
	Slide 19: Knapsack – Algorithm
	Slide 20: Knapsack – Algorithm
	Slide 21: Knapsack – Algorithm
	Slide 22: Knapsack – Algorithm
	Slide 23: Knapsack – Algorithm
	Slide 24: Knapsack – Algorithm
	Slide 25: Knapsack – Algorithm
	Slide 26: Knapsack – Algorithm
	Slide 27: Knapsack – Algorithm
	Slide 28: Knapsack – Algorithm
	Slide 29: Knapsack – Algorithm
	Slide 30: Knapsack – Algorithm
	Slide 31: Knapsack – Algorithm
	Slide 32: Knapsack – Algorithm
	Slide 33: Knapsack – Algorithm
	Slide 34: Knapsack – Algorithm
	Slide 35: Knapsack – Algorithm
	Slide 36: Knapsack – Algorithm
	Slide 37: Knapsack – Algorithm
	Slide 38: Knapsack – Algorithm
	Slide 39: Knapsack – Algorithm
	Slide 40: Knapsack – Algorithm
	Slide 41: Knapsack – Algorithm
	Slide 42: Knapsack – Performance
	Slide 43: Knapsack – Performance
	Slide 44: Knapsack – Performance
	Slide 45: Knapsack – Performance
	Slide 46: Knapsack – Performance
	Slide 47: Knapsack – Performance
	Slide 48: Knapsack – Performance
	Slide 49: Knapsack – Performance
	Slide 50: Knapsack – Performance
	Slide 51: Knapsack – Performance
	Slide 52: Knapsack – Performance
	Slide 53: Knapsack – Performance
	Slide 54: Knapsack – Performance
	Slide 55: Knapsack – Performance
	Slide 56: Knapsack – Performance
	Slide 57: Knapsack – Performance
	Slide 58: Knapsack – Performance
	Slide 59: Knapsack – Performance
	Slide 60: Knapsack – Performance
	Slide 61: Knapsack – Performance
	Slide 62: Knapsack – Performance
	Slide 63: Knapsack – Performance
	Slide 64: Knapsack – Performance
	Slide 65: Knapsack – Performance
	Slide 66: Knapsack – Performance
	Slide 67: Knapsack – Performance
	Slide 68: Knapsack – Performance
	Slide 69: Knapsack – Performance
	Slide 70: Knapsack
	Slide 71: Knapsack
	Slide 72: Knapsack
	Slide 73: Approximability Hierarchy

