ILP-Based Approximations CSCI 532

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $x_i \in \{0,1\}$, for each vertex i

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $x_i \in \{0, 1\}$, for each vertex i

∈ NP-Complete

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $x_i \in \{0, 1\}$, for each vertex i

∈ NP-Complete

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $x_i \in \{0, 1\}$, for each vertex i

∈ NP-Complete

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $\in P$

LP Relaxation: Remove all integrality constraints to turn ILP into LP.

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

If $x_i = 1$, what should we do with vertex i?

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

If $x_i = 1$, what should we do with vertex i? Add to subset S If $x_i = 0$, what should we do with vertex i?

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

If $x_i = 1$, what should we do with vertex i? Add to subset S If $x_i = 0$, what should we do with vertex i? Don't add to subset S

Vertex Cover: Given a graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_{i}$

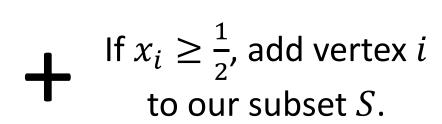
Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j) $0 \le x_i \le 1$, for each vertex i

If $x_i = 1$, what should we do with vertex i? Add to subset S If $x_i = 0$, what should we do with vertex i? Don't add to subset S If $x_i = \frac{126}{337}$, what should we do with vertex *i*?

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i



Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \text{If } x_i \ge \frac{1}{2}, \text{ add vertex } i$ to our subset S.

Is S a vertex cover?

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \text{ If } x_i \ge \frac{1}{2}, \text{ add vertex } i$ to our subset S.

Is S a vertex cover? Yes. For every edge, $x_i + x_i \ge 1$.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

$$+ \quad \text{If } x_i \ge \frac{1}{2}, \text{ add vertex } i \\ \text{to our subset } S.$$

Is S a vertex cover?

Yes. For every edge, $x_i + x_j \ge 1$. Thus, at least one of x_i or

$$x_j \geq \frac{1}{2}$$
.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

Is S a vertex cover?

Yes. For every edge, $x_i + x_j \ge 1$. Thus, at least one of x_i or $x_j \ge \frac{1}{2}$. So for every edge, at least one of its vertices will be in S.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \quad \text{If } x_i \ge \frac{1}{2}, \text{ add vertex } i \\ \text{to our subset } S.$

What is the relationship between ALG = |S| and OPT?

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \quad \text{If } x_i \ge \frac{1}{2}, \text{ add vertex } i \\ \text{to our subset } S.$

Can we bound OPT from below?

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

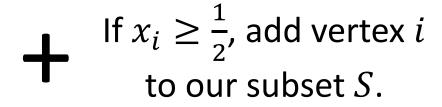
Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i



Can we bound OPT from below?

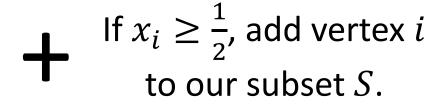
Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP

Claim: $\sum x_{LP} \le OPT$.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i



Can we bound OPT from below?

Let x_{ILP} and x_{LP} be the set of x values found by the ILP and LP

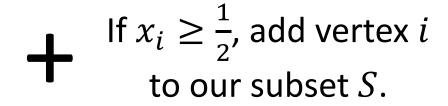
Claim: $\sum x_{LP} \le OPT$.

Proof: OPT = $\sum x_{ILP}$, where $x_i \in \{0,1\}$. When x_i is relaxed so that $0 \le x_i \le 1$, this gives more possibilities to further decrease $\sum_i x_i$. Thus, $\sum x_{IP} \le OPT$.

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

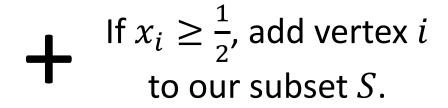


$$\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} x_i, \text{ because...?}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i



$$\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} x_i, \text{ because it's a subset of } x_{LP}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

$$+ \text{ If } x_i \ge \frac{1}{2}, \text{ add vertex } i$$
to our subset S .

$$\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} x_i, \text{ because it's a subset of } x_{LP}$$
$$\ge \sum_{x_i \in X_{LP}: x_i \ge \frac{1}{2}} \frac{1}{2}, \text{ because...?}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \quad \text{If } x_i \ge \frac{1}{2}, \text{ add vertex } i \\ \text{to our subset } S.$

$$\sum \mathbf{x}_{\mathsf{LP}} = \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}}$$
$$\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \text{ If } x_i \ge \frac{1}{2}, \text{ add vertex } i$ to our subset S.

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| \end{split}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

 $+ \text{ If } x_i \ge \frac{1}{2}, \text{ add vertex } i$ to our subset S.

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{x}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| = ? \end{split}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

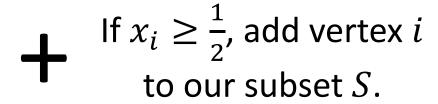
 $0 \le x_i \le 1$, for each vertex i

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i \text{, because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2} \text{, because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{x}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| = \frac{1}{2} \mathsf{ALG} \end{split}$$

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i



What is the relationship between ALG and OPT?

$$\sum x_{LP} \ge \frac{1}{2}$$
 ALG and $\sum x_{LP} \le OPT$

$$ALG \le 2 OPT$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$$U = \{1, 4, 7, 8, 10\}$$

$$S = \left\{ \begin{cases} 1, 7, 8 \\ 7, 8 \end{cases}, \begin{cases} 1, 4, 7 \\ 4, 8, 10 \end{cases} \right\}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \left\{ \begin{cases} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{cases} \right\}$$

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

Example:

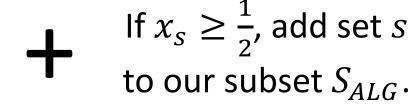
Objective: $\min x_1 + x_2 + x_3 + x_4$ Subject to: $x_1 + x_2 \ge 1$ $x_2 + x_4 \ge 1$ $x_1 + x_2 + x_3 \ge 1$ $x_1 + x_3 + x_4 \ge 1$ $x_4 \ge 1$ $x_1, x_2, x_3, x_4 \in \{0,1\}$

$$U = \{1, 4, 7, 8, 10\}$$
$$S = \begin{Bmatrix} \{1, 7, 8\}, \{1, 4, 7\}, \\ \{7, 8\}, \{4, 8, 10\} \end{Bmatrix}$$

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

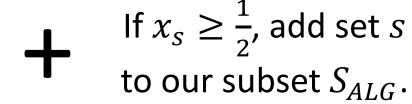
 $0 \le x_s \le 1$, for each set s



Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $0 \le x_s \le 1$, for each set s

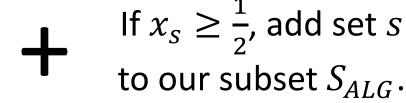


Could this lead to an invalid solution?

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{S: u \in S} x_S \ge 1$, for each $u \in U$

 $0 \le x_s \le 1$, for each set s



Could this lead to an invalid solution?

Objective:
$$\min x_1 + x_2 + x_3 + x_4$$

Subject to: $x_1 + x_2 + x_3 \ge 1$
 $x_1 + x_2 + x_4 \ge 1$
 $x_1 + x_3 + x_4 \ge 1$
 $x_2 + x_3 + x_4 \ge 1$
 $x_1, x_2, x_3, x_4 \in [0,1]$

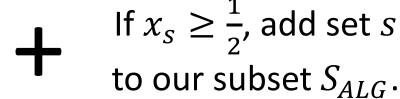
$$U = \{1, 2, 3, 4\}$$

$$S = \left\{ \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\} \right\}$$

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{S: u \in S} x_S \ge 1$, for each $u \in U$

 $0 \le x_s \le 1$, for each set s



Could this lead to an invalid solution?

Objective: $\min x_1 + x_2 + x_3 + x_4$ Subject to: $x_1 + x_2 + x_3 \ge 1$ $x_1 + x_2 + x_4 \ge 1$ $x_1 + x_3 + x_4 \ge 1$ $x_2 + x_3 + x_4 \ge 1$ $x_1, x_2, x_3, x_4 \in [0,1]$

$$U = \{1, 2, 3, 4\}$$

$$S = \left\{ \begin{cases} \{1, 2, 3\}, \{1, 2, 4\}, \\ \{1, 3, 4\}, \{2, 3, 4\} \end{cases} \right\}$$

Yes, in this case $x_s = \frac{1}{3}$, $\forall s \Rightarrow \text{No sets are selected (invalid solution)}$.

Where each element appears in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Where each element appears in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$

Subject to: $\sum_{S: u \in S} x_S \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

Where each element appears in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

 $+ \quad \text{If } x_s \ge \frac{1}{2}, \text{ add set } s$ to our subset S_{ALG} .

Where each
element appears
in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

If $x_s \ge \frac{1}{2}$, add set s to our subset S_{ALG} .

Where each
element appears
in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

If $x_s \ge \frac{1}{2}$, add set s to our subset S_{ALG} .

Valid?

Where each
element appears
in at most d sets.

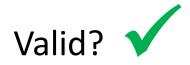
Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{s} x_{s}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

If $x_s \ge \frac{1}{2}$, add set s to our subset S_{ALG} .



Where each element appears in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

If $x_s \ge \frac{1}{2}$, add set s to our subset S_{ALG} .

Valid? 🗸

Approximation Ratio?

Vertex Cover ILP

Objective: $\min \sum_{i} x_{i}$

Subject to: $x_i + x_j \ge 1$, for each edge e = (i, j)

 $0 \le x_i \le 1$, for each vertex i

How does $\sum x_{LP}$ relate to ALG?

$$\begin{split} \sum \mathbf{x}_{\mathsf{LP}} &= \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}} x_i \geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} x_i \text{, because it's a subset of } \mathbf{x}_{\mathsf{LP}} \\ &\geq \sum_{x_i \in \mathsf{X}_{\mathsf{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2} \text{, because each } x_i \text{ is at least } \frac{1}{2} \\ &= \frac{1}{2} \left| \left\{ x_i \in \mathsf{x}_{\mathsf{LP}}: x_i \geq \frac{1}{2} \right\} \right| = \frac{1}{2} \mathsf{ALG} \end{split}$$

Where each element appears in at most d sets.

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_{S} x_{S}$

Subject to: $\sum_{s: u \in s} x_s \ge 1$, for each $u \in U$

 $x_s \in \{0,1\}$, for each set s

 $+ \quad \text{If } x_S \ge \frac{1}{2}, \text{ add set } S$ to our subset S_{ALG} .

Approximation Ratio?

$$ALG \leq d OPT$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

	Item	Value	Weight
W = 11	1	1	1
	2	6	2
	3	18	5
	4	22	6
	5	28	7

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Ratio

Example:

W = 11	1	1	1	1
	2	6	2	3
	3	18	5	3.6
	4	22	6	3.67
	5	28	7	4

Value | Weight

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

W	=	11

Item	Value	Weight	Ratio
1	1	1	1
2	6	2	3
3	18	5	3.6
4	22	6	3.67
5	28	7	4

Algorithm: Select highest valueweight items until no space is left.

Approximation Ratio?

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

W	=	11
• •		

Item	Value	Weight	Ratio
1	1	1	1
2	6	2	3
3	18	5	3.6
4	22	6	3.67
5	28	7	4

Algorithm: Select highest valueweight items until no space is left.

Approximation Ratio?

Are there circumstances where this will do very poorly?

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = ?$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = W$$

$$ALG = ?$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = W$$

$$ALG = 2$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = W$$

$$ALG = 2$$

$$ALG \ge \frac{1}{\alpha}OPT$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = W$$

$$ALG = 2$$

$$ALG \ge \frac{1}{\alpha}OPT \Rightarrow \alpha \ge \frac{W}{2}$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2

$$OPT = W$$

$$ALG = 2$$

$$ALG \ge \frac{1}{\alpha}OPT \Rightarrow \alpha \ge \frac{W}{2} \xrightarrow[W \to \infty]{} \infty$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2
3	ε	1	ε
•••	•••	•••	•••
W+1	ε	1	æ

$$OPT = W$$

$$ALG = 2$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Example:

Item	Value	Weight	Ratio
1	W	W	1
2	2	1	2
3	ε	1	ε
•••	•••	•••	•••
W+1	ε	1	ε

$$OPT = W$$

$$ALG = 2 + (W - 1)\varepsilon$$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

$$OPT_{frac} =$$
?

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

 OPT_{frac} = Items selected by greedy algorithm up to some item that doesn't fit + fractional amount of that item to fill sack.

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

 OPT_{frac} = Items selected by greedy algorithm up to some item that doesn't fit + fractional amount of that item to fill sack.

Algorithm: Select highest valueweight items until no space is left OR select the single highest valued item.

 $OPT \leq OPT_{frac}$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

 OPT_{frac} = Items selected by greedy algorithm up to some item that doesn't fit + fractional amount of that item to fill sack.

$$OPT \leq OPT_{frac} \leq v(ALG_1) + v_j$$
Need to show.

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

 OPT_{frac} = Items selected by greedy algorithm up to some item that doesn't fit + fractional amount of that item to fill sack.

$$OPT \le OPT_{frac} \le v(ALG_1) + v_j$$

 $\Rightarrow \max\{v(ALG_1), v_j\} \ge \frac{OPT}{2}$

Knapsack: Given a set of n items with values $v_1, ..., v_n$ and weights $w_1, ..., w_n$, select the most valuable combination with total weight $\leq W$.

Suppose we could select fractional items.

 OPT_{frac} = Items selected by greedy algorithm up to some item that doesn't fit + fractional amount of that item to fin sack.

$$OPT \leq OPT_{frac} \leq v(ALG_1) > v_j$$

$$\Rightarrow \max\{v(ALG_1), v_j\} \geq \frac{OPT_1}{2}$$

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Algorithm: Assign each task to the worker with the smallest current work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

 A_w - Tasks assigned to worker w. $T_w = \sum_{i \in A_w} t_i$ - Worker

w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_i t_i$$
?

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_i t_i$$
?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_i t_i$$
?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}).

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_i t_i$$
?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it?

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_{i} t_{i}$$
?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't
$$OPT < \frac{1}{w} \sum_i t_i$$
?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

This holds when task i is assigned and at the end of the schedule, since $ALG - t_i$ does not change as more tasks are scheduled, but T_w 's may get larger.

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't $OPT < \frac{1}{w} \sum_i t_i$?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

Sum up all work done by all of the workers:

$$\sum_{w} (ALG - t_i) \le \sum_{w} T_w$$

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't $OPT < \frac{1}{w} \sum_{i} t_{i}$?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

Sum up all work done by all of the workers:

$$\sum_{w} (ALG - t_i) \le \left(\sum_{w} T_w\right)$$

Does this relate to this?

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't $OPT < \frac{1}{w} \sum_{i} t_i$?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

Sum up all work done by all of the workers:

$$\sum_{w} (ALG - t_i) \leq \sum_{w} T_w$$

Can we get a $\frac{1}{w}$ over here?

 A_w - Tasks assigned to worker w.

 $T_w = \sum_{i \in A_w} t_i$ - Worker w's work time.

Given a set of n tasks and w identical workers, assign all tasks such that the longest work time is minimized.

Why can't $OPT < \frac{1}{w} \sum_i t_i$?

Total work time $\leq w \ OPT < w \frac{1}{w} \sum_i t_i = \sum_i t_i = \text{Total work time needed.}$

Consider the worker that dictates ALG (W_{ALG}). Why was W_{ALG} 's last task i assigned to it? $ALG - t_i \leq T_w$, for all workers.

Sum up all work done by all of the workers:

$$\sum_{w} (ALG - t_i) \le \sum_{w} T_w$$

What happens if we end up with something like this:

$$ALG \leq OPT + t_i$$

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Consider edge e = (u, v). What is the probability that e crosses the cut?

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Consider edge e = (u, v). What is the probability that e crosses the cut?

- 2. $u \in A, v \in B$
- 3. $u \in B, v \in A$
- 4. $u \in B, v \in B$

1. $u \in A, v \in A$ $> \frac{1}{2}$ probability that e crosses the cut.

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Consider edge e = (u, v). What is the probability that e crosses the cut?

- 4. $u \in B, v \in B$

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Consider edge e = (u, v). What is the probability that e crosses the cut?

Given an edge weighted undirected graph, find a cut such that the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set A with probability ½. Let $B = V \setminus A$.

Consider edge e = (u, v). What is the probability that e crosses the cut?

- 2. $u \in A, v \in B$ 3. $u \in B, v \in A$
- 4. $u \in B, v \in B$

Value of Cut = \sum_{ρ} ?

E[Value of Cut] = ...

Use fact: $E[X_e] = \frac{1}{2}$ and $\sum_e w_e \ge OPT$