
ILP-Based Approximations
CSCI 532

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝑥! ∈ 0,1 , for each vertex 𝑖

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝒙𝒊 ∈ 𝟎, 𝟏 , for each vertex 𝒊
∈ NP-Complete

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝒙𝒊 ∈ 𝟎, 𝟏 , for each vertex 𝒊

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝟎 ≤ 𝒙𝒊 ≤ 𝟏, for each vertex 𝒊

∈ NP-Complete

∈ P

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝒙𝒊 ∈ 𝟎, 𝟏 , for each vertex 𝒊

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

𝟎 ≤ 𝒙𝒊 ≤ 𝟏, for each vertex 𝒊

∈ NP-Complete

∈ P

LP Relaxation: Remove all integrality constraints to turn ILP into LP.

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

Vertex
Selection?

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! = 1, what should we do with vertex 𝑖?

Vertex
Selection?

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥! = 0, what should we do with vertex 𝑖?

Vertex
Selection?

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥! = 0, what should we do with vertex 𝑖? Don’t add to subset 𝑆

Vertex
Selection?

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! = 1, what should we do with vertex 𝑖? Add to subset 𝑆
If 𝑥! = 0, what should we do with vertex 𝑖? Don’t add to subset 𝑆
If 𝑥! =

$%&
''(

, what should we do with vertex 𝑖?

Vertex
Selection?

Vertex Cover: Given a graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Is 𝑆 a vertex cover?

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Is 𝑆 a vertex cover?

Yes. For every edge, 𝑥! + 𝑥" ≥ 1.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Is 𝑆 a vertex cover?

Yes. For every edge, 𝑥! + 𝑥" ≥ 1. Thus, at least one of 𝑥! or
𝑥" ≥

$
%
.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Is 𝑆 a vertex cover?

Yes. For every edge, 𝑥! + 𝑥" ≥ 1. Thus, at least one of 𝑥! or
𝑥" ≥

$
%
. So for every edge, at least one of its vertices will be in 𝑆.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
What is the relationship between ALG = |𝑆| and OPT?

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Can we bound OPT from below?

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Can we bound OPT from below?

Let xILP and xLP be the set of x values found by the ILP and LP

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Can we bound OPT from below?

Let xILP and xLP be the set of x values found by the ILP and LP

Claim: ∑ xLP ≤ OPT.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+
Can we bound OPT from below?

Let xILP and xLP be the set of x values found by the ILP and LP

Claim: ∑ xLP ≤ OPT.

Proof: OPT = ∑ xILP, where 𝑥! ∈ 0,1 . When 𝑥! is relaxed so
that 0 ≤ 𝑥! ≤ 1, this gives more possibilities to further
decrease ∑! 𝑥!. Thus, ∑ xLP ≤ OPT.

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because...?

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because...?

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because each 𝑥! is at least $

%

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because each 𝑥! is at least $

%

= $
%

𝑥! ∈ xLP: 𝑥! ≥
$
%

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because each 𝑥! is at least $

%

= $
%

𝑥! ∈ xLP: 𝑥! ≥
$
%

= ?

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because each 𝑥! is at least $

%

= $
%

𝑥! ∈ xLP: 𝑥! ≥
$
%

= $
%

ALG

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

What is the relationship between ALG and OPT?

∑ xLP ≥
$
%

ALG and ∑ xLP ≤ OPT

ALG ≤ 2 OPT

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Set Cover ILP

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 ,
7, 8 , 4, 8, 10

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 ,
7, 8 , 4, 8, 10

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Objective: min 𝑥! + 𝑥" + 𝑥# + 𝑥$
Subject to:𝑥! + 𝑥" ≥ 1

𝑥" + 𝑥$ ≥ 1
𝑥! + 𝑥" + 𝑥# ≥ 1
𝑥! + 𝑥# + 𝑥$ ≥ 1
𝑥$ ≥ 1
𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ 0,1

Example:
𝑈 = 1, 4, 7, 8, 10

𝑆 = 1, 7, 8 , 1, 4, 7 ,
7, 8 , 4, 8, 10

Set Cover ILP

If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .+
Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

0 ≤ 𝑥- ≤ 1, for each set 𝑠

Set Cover ILP

Could this lead to an invalid solution?

+
Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

0 ≤ 𝑥- ≤ 1, for each set 𝑠

If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

Set Cover ILP

Could this lead to an invalid solution?

Objective: min 𝑥! + 𝑥" + 𝑥# + 𝑥$
Subject to:𝑥! + 𝑥" + 𝑥# ≥ 1

𝑥! + 𝑥" + 𝑥$ ≥ 1
𝑥! + 𝑥# + 𝑥$ ≥ 1
𝑥" + 𝑥# + 𝑥$ ≥ 1
𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ 0,1

𝑈 = 1, 2, 3, 4

𝑆 = 1,2,3 , 1,2,4 ,
1,3,4 , {2,3,4}

+
Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

0 ≤ 𝑥- ≤ 1, for each set 𝑠

If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

Set Cover ILP

Could this lead to an invalid solution?

Objective: min 𝑥! + 𝑥" + 𝑥# + 𝑥$
Subject to:𝑥! + 𝑥" + 𝑥# ≥ 1

𝑥! + 𝑥" + 𝑥$ ≥ 1
𝑥! + 𝑥# + 𝑥$ ≥ 1
𝑥" + 𝑥# + 𝑥$ ≥ 1
𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ 0,1

𝑈 = 1, 2, 3, 4

𝑆 = 1,2,3 , 1,2,4 ,
1,3,4 , {2,3,4}

Yes, in this case 𝑥- =
$
'
, ∀𝑠 ⇒ No sets are selected (invalid solution).

+
Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

0 ≤ 𝑥- ≤ 1, for each set 𝑠

If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

Set Cover ILP

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ ?

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ If 𝑥- ≥
$
2

, add set 𝑠
to our subset 𝑆/01 .

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ If 𝑥- ≥
$
2

, add set 𝑠
to our subset 𝑆/01 .Valid?

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ If 𝑥- ≥
$
2

, add set 𝑠
to our subset 𝑆/01 .Valid? ü

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ If 𝑥- ≥
$
2

, add set 𝑠
to our subset 𝑆/01 .Valid?

Approximation Ratio?

ü

Vertex Cover ILP

Objective: min∑! 𝑥!
Subject to: 𝑥! + 𝑥" ≥ 1, for each edge 𝑒 = 𝑖, 𝑗

0 ≤ 𝑥! ≤ 1, for each vertex 𝑖

How does ∑ xLP relate to ALG?

∑ xLP = ∑)!∈xLP𝑥! ≥ ∑
)!∈xLP:)!,

"
#
𝑥!, because it’s a subset of xLP

≥ ∑
)!∈xLP:)!,

"
#

$
%
, because each 𝑥! is at least $

%

= $
%

𝑥! ∈ xLP: 𝑥! ≥
$
%

= $
%

ALG

If 𝑥! ≥
$
%
, add vertex 𝑖

to our subset 𝑆.+

Set Cover ILP

Objective: min∑- 𝑥-
Subject to: ∑-: .∈- 𝑥- ≥ 1, for each 𝑢 ∈ 𝑈

𝑥- ∈ 0,1 , for each set 𝑠

Set Cover: Given a universe of elements 𝑈 and sets 𝑆, find the smallest
subset of 𝑆 such that every element in 𝑈 is in some selected subset.

Where each
element appears
in at most 𝒅 sets.

+ If 𝑥- ≥
$
%
, add set 𝑠

to our subset 𝑆/01 .

+ If 𝑥- ≥
$
2

, add set 𝑠
to our subset 𝑆/01 .Valid?

Approximation Ratio?

ALG ≤ 𝑑 OPT

ü

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight

1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

𝑊 = 11

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:

𝑊 = 11

Item Value Weight Ratio
1 1 1 1
2 6 2 3
3 18 5 3.6
4 22 6 3.67
5 28 7 4

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:

𝑊 = 11

Item Value Weight Ratio
1 1 1 1
2 6 2 3
3 18 5 3.6
4 22 6 3.67
5 28 7 4

Algorithm: Select highest value-
weight items until no space is left.

Approximation Ratio?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:

𝑊 = 11

Item Value Weight Ratio
1 1 1 1
2 6 2 3
3 18 5 3.6
4 22 6 3.67
5 28 7 4

Algorithm: Select highest value-
weight items until no space is left.

Approximation Ratio?

Are there circumstances
where this will do very poorly?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = ?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = ?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2

𝐴𝐿𝐺 ≥
1
𝛼
𝑂𝑃𝑇

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2

𝐴𝐿𝐺 ≥
1
𝛼
𝑂𝑃𝑇 ⇒ 𝛼 ≥

𝑊
2

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2

𝐴𝐿𝐺 ≥
1
𝛼
𝑂𝑃𝑇 ⇒ 𝛼 ≥

𝑊
2 4→6

∞

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2
3 𝜀 1 𝜀
… …

𝑊+1 𝜀 1 𝜀

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Example:
Item Value Weight Ratio

1 𝑊 𝑊 1
2 2 1 2
3 𝜀 1 𝜀
… …

𝑊+1 𝜀 1 𝜀

Algorithm: Select highest value-
weight items until no space is left.

𝑂𝑃𝑇 = 𝑊
𝐴𝐿𝐺 = 2 + 𝑊 − 1 𝜀

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = ?

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = Items selected by greedy
algorithm up to some item that doesn’t fit
+ fractional amount of that item to fill sack.

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = Items selected by greedy
algorithm up to some item that doesn’t fit
+ fractional amount of that item to fill sack.

𝑂𝑃𝑇 ≤ 𝑂𝑃𝑇789:

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = Items selected by greedy
algorithm up to some item that doesn’t fit
+ fractional amount of that item to fill sack.

𝑂𝑃𝑇 ≤ 𝑂𝑃𝑇789: ≤ 𝑣 𝐴𝐿𝐺$ + 𝑣"

Need to show.

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = Items selected by greedy
algorithm up to some item that doesn’t fit
+ fractional amount of that item to fill sack.

𝑂𝑃𝑇 ≤ 𝑂𝑃𝑇789: ≤ 𝑣 𝐴𝐿𝐺$ + 𝑣"

⇒ max 𝑣 𝐴𝐿𝐺$, 𝑣" ≥ ;<=
%

Knapsack

Knapsack: Given a set of 𝑛 items with values 𝑣$, … , 𝑣3 and
weights 𝑤$, … , 𝑤3, select the most valuable combination
with total weight ≤ 𝑊.

Algorithm: Select highest value-
weight items until no space is left
OR select the single highest
valued item.

Suppose we could select fractional items.

𝑂𝑃𝑇789: = Items selected by greedy
algorithm up to some item that doesn’t fit
+ fractional amount of that item to fill sack.

𝑂𝑃𝑇 ≤ 𝑂𝑃𝑇789: ≤ 𝑣 𝐴𝐿𝐺$ + 𝑣"

⇒ max 𝑣 𝐴𝐿𝐺$, 𝑣" ≥ ;<=
%

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Algorithm: Assign each task to the worker with
the smallest current work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01).

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it?

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

This holds when task 𝒊 is assigned and at the end of
the schedule, since 𝑨𝑳𝑮 − 𝒕𝒊 does not change as
more tasks are scheduled, but 𝑻𝒘’s may get larger.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

Sum up all work done by all of the workers:

W
>

𝐴𝐿𝐺 − 𝑡! ≤W
>

𝑇>

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

Sum up all work done by all of the workers:

W
>

𝐴𝐿𝐺 − 𝑡! ≤W
>

𝑇>

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Does this
relate to this?

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

Sum up all work done by all of the workers:

W
>

𝐴𝐿𝐺 − 𝑡! ≤W
>

𝑇>

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

Can we get a 𝟏
𝒘

over here?

Work Scheduling

Given a set of 𝑛 tasks and 𝑤 identical workers, assign all
tasks such that the longest work time is minimized.

Why can’t 𝑂𝑃𝑇 < $
>
∑! 𝑡!?

Total work time ≤ 𝑤 𝑂𝑃𝑇 < 𝑤 $
>
∑! 𝑡! = ∑! 𝑡! = Total work time needed.

Consider the worker that dictates 𝐴𝐿𝐺 (𝑊/01). Why was 𝑊/01 ’s last task 𝑖
assigned to it? 𝐴𝐿𝐺 − 𝑡! ≤ 𝑇>, for all workers.

Sum up all work done by all of the workers:

W
>

𝐴𝐿𝐺 − 𝑡! ≤W
>

𝑇>

𝐴% - Tasks assigned to
worker 𝑤.
𝑇% = ∑&∈(! 𝑡& - Worker
𝑤’s work time.

What happens if we end up
with something like this:

𝑨𝑳𝑮 ≤ 𝑶𝑷𝑻 + 𝒕𝒊

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Consider edge 𝑒 = (𝑢, 𝑣). What is the probability that 𝑒 crosses the cut?

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Consider edge 𝑒 = (𝑢, 𝑣). What is the probability that 𝑒 crosses the cut?

1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴
2. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
3. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐴
4. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵

𝟏
𝟐

probability that 𝒆 crosses the cut.

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Consider edge 𝑒 = (𝑢, 𝑣). What is the probability that 𝑒 crosses the cut?

1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴
2. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
3. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐴
4. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵

𝟏
𝟐

probability that 𝒆 crosses the cut.
Let random variable 𝑋B =

1 if 𝑒 crosses cut
0 if not

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Consider edge 𝑒 = (𝑢, 𝑣). What is the probability that 𝑒 crosses the cut?

1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴
2. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
3. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐴
4. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵

𝟏
𝟐

probability that 𝒆 crosses the cut.
Let random variable 𝑋B =
Value of Cut = ∑B?

1 if 𝑒 crosses cut
0 if not

Max Cut

Given an edge weighted undirected graph, find a cut such that
the sum of edge weights that cross the cut is maximized.

Algorithm: Assigned each vertex to set 𝐴 with probability ½. Let 𝐵 = 𝑉\A.

Consider edge 𝑒 = (𝑢, 𝑣). What is the probability that 𝑒 crosses the cut?

1. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴
2. 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
3. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐴
4. 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵

𝟏
𝟐

probability that 𝒆 crosses the cut.
Let random variable 𝑋B =
Value of Cut = ∑B?
𝐸[Value of Cut] = …

Use fact: 𝐸 𝑋B = $
%

and ∑B𝑤B ≥ 𝑂𝑃𝑇

1 if 𝑒 crosses cut
0 if not

