Linear Program Relaxations
CSCI 532
\[G = (V, E) \]
\[G' = (V, E') \]
(complement graph)
\[G = (V, E) \]

\[G' = (V, E') \]

(complement graph)
Clique of size k

$$G = (V, E)$$

Vertex cover of size $|V| - k$

$$G' = (V, E')$$
(complement graph)
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)

Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(x_i \in \{0, 1\} \), for each vertex \(i \)
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[x_i \in \{0, 1\}, \text{ for each vertex } i \]

Example:

Objective: \[\min x_1 + x_2 + x_3 + x_4 \]
Subject to: \[x_1 + x_2 \geq 1 \]
\[x_2 + x_3 \geq 1 \]
\[x_2 + x_4 \geq 1 \]
\[x_3 + x_4 \geq 1 \]
\[x_1, x_2, x_3, x_4 \in \{0, 1\} \]
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(x_i \in \{0, 1\} \), for each vertex \(i \)

\(\in \text{NP-Complete} \)
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(x_i \in \{0, 1\} \), for each vertex \(i \)

\(\in \text{NP-Complete} \)

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

\(\in \text{P} \)
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(x_i \in \{0, 1\} \), for each vertex \(i \)

\(\in \text{NP-Complete} \)

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

\(\in \text{P} \)

LP Relaxation: Remove all integrality constraints to turn ILP into LP.
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]
Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1, \) for each edge \(e = (i,j) \)
\(0 \leq x_i \leq 1, \) for each vertex \(i \)

If \(x_i = 1, \) what should we do with vertex \(i? \)
Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i = 1 \), what should we do with vertex \(i \)? Add to subset \(S \)
If \(x_i = 0 \), what should we do with vertex \(i \)?
Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: $\min \sum_{i} x_i$

Subject to: $x_i + x_j \geq 1$, for each edge $e = (i, j)$

$0 \leq x_i \leq 1$, for each vertex i

If $x_i = 1$, what should we do with vertex i? Add to subset S

If $x_i = 0$, what should we do with vertex i? Don’t add to subset S
Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i = 1 \), what should we do with vertex \(i \)? Add to subset \(S \)
If \(x_i = 0 \), what should we do with vertex \(i \)? Don’t add to subset \(S \)
If \(x_i = \frac{126}{337} \), what should we do with vertex \(i \)?
Vertex Cover ILP

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \)
\(0 \leq x_i \leq 1, \text{ for each vertex } i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Is \(S \) a vertex cover?
Vertex Cover ILP

Objective: \[\min \sum_{i} x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

Is \(S \) a vertex cover?
Yes. For every edge, \(x_i + x_j \geq 1 \).

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

+ If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Is \(S \) a vertex cover?
Yes. For every edge, \(x_i + x_j \geq 1 \). Thus, at least one of \(x_i \) or \(x_j \geq \frac{1}{2} \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)

Subject to:
\[
\begin{align*}
 x_i + x_j & \geq 1, \text{ for each edge } e = (i, j) \\
 0 \leq x_i \leq 1, & \text{ for each vertex } i
\end{align*}
\]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Is \(S \) a vertex cover?
Yes. For every edge, \(x_i + x_j \geq 1 \). Thus, at least one of \(x_i \) or \(x_j \geq \frac{1}{2} \). So for every edge, at least one of its vertices will be in \(S \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

What is the relationship between \(\text{ALG} = |S| \) and \(\text{OPT} \)?
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound \(\text{OPT} \) from below?
Vertex Cover ILP

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound \(\text{OPT} \) from below?

Let \(x_{\text{ILP}} \) and \(x_{\text{LP}} \) be the set of \(x \) values found by the ILP and LP.
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound \(\text{OPT} \) from below?

Let \(x_{ILP} \) and \(x_{LP} \) be the set of \(x \) values found by the ILP and LP

Claim: \(\sum x_{LP} \leq \text{OPT} \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound \(\text{OPT} \) from below?

Let \(x_{\text{ILP}} \) and \(x_{\text{LP}} \) be the set of \(x \) values found by the ILP and LP

Claim: \(\sum x_{\text{LP}} \leq \text{OPT} \).

Proof: \(\text{OPT} = ? \)
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound OPT from below?

Let \(x_{\text{ILP}} \) and \(x_{\text{LP}} \) be the set of x values found by the ILP and LP

Claim: \(\sum x_{\text{LP}} \leq \text{OPT} \).

Proof: \(\text{OPT} = \sum x_{\text{ILP}} \), where \(x_i \in \{0, 1\} \)
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)

Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Can we bound OPT from below?

Let \(x_{\text{ILP}} \) and \(x_{\text{LP}} \) be the set of x values found by the ILP and LP

Claim: \(\sum x_{\text{LP}} \leq \text{OPT} \).

Proof: \(\text{OPT} = \sum x_{\text{ILP}} \), where \(x_i \in \{0,1\} \). When \(x_i \) is relaxed so that \(0 \leq x_i \leq 1 \), this gives more possibilities to further decrease \(\sum_i x_i \). Thus, \(\sum x_{\text{LP}} \leq \text{OPT} \).
Vertex Cover ILP

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

Can we bound OPT from below?

Law of LP Relaxations:

\[\text{OPT}_{LP} \leq \text{OPT}_{ILP} \]

(minimization problem)

\[\sum_i x_i \leq \text{OPT} \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

Objective values, not individual variable values.
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)

Subject to:
\[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

How does \(\sum x_{\text{LP}} \) relate to ALG?

\[\sum x_{\text{LP}} = \sum_{x_i \in \mathcal{X}_{\text{LP}}} x_i \geq \sum_{x_i \in \mathcal{X}_{\text{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because...?} \]
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)

Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

How does \(\sum x_{LP} \) relate to ALG?
\[
\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \geq \sum_{x_i \in X_{LP}: x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } x_{LP}
\]

\(+ \) If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_{i} x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

How does \(\sum x_{LP} \) relate to ALG?

\[
\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \geq \sum_{x_i \in X_{LP} : x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } x_{LP}
\]
\[
\geq \sum_{x_i \in X_{LP} : x_i \geq \frac{1}{2} \frac{1}{2}, \text{ because...?}}
\]
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1, \) for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1, \) for each vertex \(i \)

How does \(\sum x_{\text{LP}} \) relate to ALG?

\[
\sum x_{\text{LP}} = \sum_{x_i \in x_{\text{LP}}} x_i \geq \sum_{x_i \in x_{\text{LP}}: x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } x_{\text{LP}} \\
\geq \sum_{x_i \in x_{\text{LP}}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2}
\]

\[
\sum x_{\text{LP}} \geq \frac{1}{2} \sum_{x_i \in x_{\text{LP}}: x_i \geq \frac{1}{2}} 1
\]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_{i} x_i \)

Subject to:
- \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
- \(0 \leq x_i \leq 1 \), for each vertex \(i \)

+ If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

How does \(\sum x_{LP} \) relate to ALG?

\[
\sum x_{LP} = \sum_{i \in X_{LP}} x_i \geq \sum_{i \in X_{LP}: x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } x_{LP} \\
\geq \sum_{i \in X_{LP}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\
= \frac{1}{2} \left| \left\{ x_i \in X_{LP}: x_i \geq \frac{1}{2} \right\} \right|
\]
Vertex Cover ILP

Objective: \[\min \sum_i x_i \]
Subject to: \[x_i + x_j \geq 1, \text{ for each edge } e = (i, j) \]
\[0 \leq x_i \leq 1, \text{ for each vertex } i \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

How does \(\sum x_{LP} \) relate to ALG?

\[
\sum x_{LP} = \sum_{x_i \in X_{LP}} x_i \geq \sum_{x_i \in X_{LP}: x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } X_{LP} \\
\geq \sum_{x_i \in X_{LP}: x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2} \\
= \frac{1}{2} \left| \left\{ x_i \in X_{LP}: x_i \geq \frac{1}{2} \right\} \right| = ?
\]
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)

Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

How does \(\sum x_{LP} \) relate to ALG?

\[
\sum x_{LP} = \sum_{x_i \in x_{LP}} x_i \geq \sum_{x_i \in x_{LP} : x_i \geq \frac{1}{2}} x_i, \text{ because it’s a subset of } x_{LP}
\]
\[
\geq \sum_{x_i \in x_{LP} : x_i \geq \frac{1}{2}} \frac{1}{2}, \text{ because each } x_i \text{ is at least } \frac{1}{2}
\]
\[
= \frac{1}{2} \left| \left\{ x_i \in x_{LP} : x_i \geq \frac{1}{2} \right\} \right| = \frac{1}{2} \text{ ALG}
\]

\(+ \) If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).

What is the relationship between ALG and OPT?
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

What is the relationship between ALG and OPT?

\(\sum x_{LP} \geq \frac{1}{2} \) ALG and \(\sum x_{LP} \leq \text{OPT} \)

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
Vertex Cover ILP

Objective: \(\min \sum_i x_i \)
Subject to: \(x_i + x_j \geq 1 \), for each edge \(e = (i, j) \)
\(0 \leq x_i \leq 1 \), for each vertex \(i \)

What is the relationship between ALG and OPT?
\[\sum x_{LP} \geq \frac{1}{2} \text{ALG and } \sum x_{LP} \leq \text{OPT} \]
\[\text{ALG} \leq 2 \text{OPT} \]

If \(x_i \geq \frac{1}{2} \), add vertex \(i \) to our subset \(S \).
NPO: Roughly, optimization versions of NP decision problems.