Randomized Rounding
CSCI 532
Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$U = \{1, 4, 7, 8, 10\}$

$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$
Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$U = \{1, 4, 7, 8, 10\}$

$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$
Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective: $\min \sum_s x_s$
Subject to: $\sum_{s: u \in s} x_s \geq 1$, for each $u \in U$
$x_s \in \{0,1\}$, for each set s

$U = \{1, 4, 7, 8, 10\}$
$S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\}$
Set Cover ILP

Set Cover: Given a universe of elements \(U \) and sets \(S \), find the smallest subset of \(S \) such that every element in \(U \) is in some selected subset.

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{u \in s} x_s \geq 1 \), for each \(u \in U \)
\(x_s \in \{0,1\} \), for each set \(s \)

Example:

Objective: \(\min x_1 + x_2 + x_3 + x_4 \)
Subject to: \(x_1 + x_2 \geq 1 \)
\(x_2 + x_4 \geq 1 \)
\(x_1 + x_2 + x_3 \geq 1 \)
\(x_1 + x_3 + x_4 \geq 1 \)
\(x_4 \geq 1 \)
\(x_1, x_2, x_3, x_4 \in \{0,1\} \)

\(U = \{1, 4, 7, 8, 10\} \)
\(S = \{\{1, 7, 8\}, \{1, 4, 7\}, \{7, 8\}, \{4, 8, 10\}\} \)
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)
Set Cover ILP

Objective: \[\min \sum_s x_s \]
Subject to: \[\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

+ If \(x_s \geq \frac{1}{2} \), add set \(s \) to our subset \(S_{ALG} \).

Could this lead to an invalid solution?
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Could this lead to an invalid solution?

Objective: \(\min x_1 + x_2 + x_3 + x_4 \)
Subject to: \(x_1 + x_2 + x_3 \geq 1 \)
\(x_1 + x_2 + x_4 \geq 1 \)
\(x_1 + x_3 + x_4 \geq 1 \)
\(x_2 + x_3 + x_4 \geq 1 \)
\(x_1, x_2, x_3, x_4 \in [0,1] \)

\[U = \{1, 2, 3, 4\} \]
\[S = \{\{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}\} \]

If \(x_s \geq \frac{1}{2} \), add set \(s \) to our subset \(S_{ALG} \).
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Could this lead to an invalid solution?

Objective: \(\min x_1 + x_2 + x_3 + x_4 \)
Subject to: \(x_1 + x_2 + x_3 \geq 1 \)
\(x_1 + x_2 + x_4 \geq 1 \)
\(x_1 + x_3 + x_4 \geq 1 \)
\(x_2 + x_3 + x_4 \geq 1 \)
\(x_1, x_2, x_3, x_4 \in [0,1] \)

Yes, in this case \(x_s = \frac{1}{3} \), \(\forall s \Rightarrow \) No sets are selected (invalid solution).

If \(x_s \geq \frac{1}{2} \), add set \(s \) to our subset \(S_{ALG} \).

\[U = \{1, 2, 3, 4\} \]
\[S = \{\{1,2,3\}, \{1,2,4\}\} \]
\[\{1,3,4\}, \{2,3,4\}\} \]
Set Cover ILP

Objective: \[\min \sum_s x_s \]

Subject to:
- \[\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \]
- \[0 \leq x_s \leq 1, \text{ for each set } s \]
Set Cover ILP

Objective: \[\min \sum_s x_s \]
Subject to: \[\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)

+ Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

1. What is the size of the solution?
2. What is the probability the solution is valid?
Set Cover ILP

Objective: \[\min \sum_s x_s \]

Subject to: \[\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

1. What is the size of the solution?
 Let \(x_s^* \) be the optimal solutions to the LP relaxation.
Set Cover ILP

Objective: \[\min \sum_s x_s \]
Subject to: \[\sum_{u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

+ Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

1. What is the size of the solution?
 Let \(x_s^* \) be the optimal solutions to the LP relaxation.
 Define random variable \(X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases} \)
Set Cover ILP

<table>
<thead>
<tr>
<th>Objective:</th>
<th>(\min \sum_s x_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject to:</td>
<td>(\sum_{s: u \in s} x_s \geq 1), for each (u \in U)</td>
</tr>
<tr>
<td></td>
<td>(0 \leq x_s \leq 1), for each set (s)</td>
</tr>
</tbody>
</table>

1. What is the size of the solution?

Let \(x_s^* \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[
E[ALG] = E[\sum_{s \in S_{ALG}} X_s]
\]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)

1. What is the size of the solution?
Let \(x^*_s \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[E[ALG] = E[\sum_{s \in S_{ALG}} X_s] = E[\sum_{s \in S} X_s], \] since the rest of the \(X_s = 0 \)
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

1. What is the size of the solution?

Let \(x^*_s \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, \ s \in S_{ALG} \\ 0, \text{otherwise} \end{cases} \)

\[E[ALG] = E[\sum_{s \in S_{ALG}} X_s] = E[\sum_{s \in S} X_s], \text{since the rest of the } X_s = 0 \]
\[= \sum_{s \in S} E[X_s], \text{by linearity of expectation} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

1. What is the size of the solution?

Let \(x_s^* \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[
E[ALG] = E[\sum_{s \in S_{ALG}} X_s] = E[\sum_{s \in S} X_s], \text{ since the rest of the } X_s = 0
= \sum_{s \in S} E[X_s], \text{ by linearity of expectation}
= \sum_{s \in S} x_s^*, \text{ since } x_s^* \text{ is probability } X_s = 1
\]

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).
Set Cover ILP

Objective:	\(\min \sum_s x_s \)
Subject to:	\(\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \)
	\(0 \leq x_s \leq 1, \text{ for each set } s \)

1. What is the size of the solution?

Let \(x_s^* \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[
E[ALG] = E[\sum_{s \in S_{ALG}} X_s] = E[\sum_{s \in S} X_s], \text{ since the rest of the } X_s = 0 \\
= \sum_{s \in S} E[X_s], \text{ by linearity of expectation} \\
= \sum_{s \in S} x_s^*, \text{ since } x_s^* \text{ is probability } X_s = 1 \\
= OPT_{LP} + \text{ Add set } s \text{ to our subset } S_{ALG} \text{ with probability of } x_s.
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: \mu \in s} x_s \geq 1, \text{ for each } \mu \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

1. What is the size of the solution?

Let \(x_s^* \) be the optimal solutions to the LP relaxation.

Define random variable \(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\(E[ALG] = E[\sum_{s \in S_{ALG}} X_s] = E[\sum_{s \in S} X_s], \) since the rest of the \(X_s = 0 \)
\(= \sum_{s \in S} E[X_s], \) by linearity of expectation
\(= \sum_{s \in S} x_s^*, \) since \(x_s^* \) is probability \(X_s = 1 \)
\(= OPT_{LP} \leq OPT \)
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

2. What is the probability solution is valid?
Set Cover ILP

Objective: $\min \sum_s x_s$
Subject to: $\sum_{s: u \in s} x_s \geq 1$, for each $u \in U$
 $0 \leq x_s \leq 1$, for each set s

2. What is the probability solution is valid?

Add set s to our subset S_{ALG} with probability of x_s.

Recall: $x_s^* = \text{optimal solutions to LP relaxation}$

$$X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases}$$
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation
\(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)
Set Cover ILP

Objective: \(\min \sum_s x_s \)

Subject to:
- \(\sum_{u \in s} x_s \geq 1 \), for each \(u \in U \)
- \(0 \leq x_s \leq 1 \), for each set \(s \)

2. What is the probability solution is valid?

Let \(S_u \) be sets of \(S \) that contain element \(u \).

\(u \) is covered by \(S_{ALG} \) \(\iff \sum_{S_u} X_s \geq 1 \).

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation

\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \(\min \sum_S x_S \)
Subject to: \(\sum_{S: u \in S} x_S \geq 1, \) for each \(u \in U \)
\(0 \leq x_S \leq 1, \) for each set \(S \)

2. What is the probability solution is valid?
Let \(S_u \) be sets of \(S \) that contain element \(u \).
\(u \) is covered by \(S_{ALG} \) \(\iff \sum_{S_u} X_S \geq 1. \)
\(\Pr[u \ not \ covered \ by \ S_{ALG}] \)

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation
\[
X_S = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]
Set Cover ILP

Objective: \[\min \sum_s x_s \]
Subject to: \[\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

2. What is the probability solution is valid?
Let \(S_u \) be sets of \(S \) that contain element \(u \).
\(u \) is covered by \(S_{ALG} \) if \(\sum_{s \in S_u} X_s \geq 1 \).

\[\Pr[u \text{ not covered by } S_{ALG}] = \prod_{S_u} (1 - x^*_s), \] since \(X_s \) independent

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x^*_s = \) optimal solutions to LP relaxation
\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

2. What is the probability solution is valid?
Let \(S_u \) be sets of \(S \) that contain element \(u \).
\(u \) is covered by \(S_{ALG} \) \(\iff \sum_{S_u} X_s \geq 1 \).
\(\Pr[u \) not covered by \(S_{ALG}] = \Pi_{S_u} (1 - x_s^*), \) since \(X_s \) independent
\[\leq \Pi_{S_u} e^{-x_s^*}, \] since \(1 + y \leq e^y \) for all \(y \in \mathbb{R} \)

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation
\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).
 \(u \) is covered by \(S_{ALG} \) \(\iff \sum_{S_u} X_s \geq 1. \)
 \(\Pr[u \text{ not covered by } \ S_{ALG}] = \prod_{S_u} (1 - x^*_s), \) since \(X_s \) independent
 \[\leq \prod_{S_u} e^{-x^*_s}, \] since \(1 + y \leq e^y \) for all \(y \in \mathbb{R} \)
 \[= e^{-\sum_{S_u} x^*_s}, \] because of algebra
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).
 \(u \) is covered by \(S_{ALG} \iff \sum_{S_u} X_s \geq 1. \)
 \(\Pr[u \text{ not covered by } S_{ALG}] = \prod_{S_u} (1 - x_s^*), \) since \(X_s \) independent
 \(\leq \prod_{S_u} e^{-x_s^*}, \) since \(1 + y \leq e^y \) for all \(y \in \mathbb{R} \)
 \(= e^{-\sum_{S_u} x_s^*}, \) because of algebra
 \(\leq \frac{1}{e} \approx 0.37, \) since \(\sum_{S_u} x_s^* \geq 1 \)
 Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).
 Recall: \(x_s^* = \) optimal solutions to LP relaxation
 \[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \[\min \sum_s x_s \]
Subject to: \[\sum_{u \in s} x_s \geq 1, \text{ for each } u \in U \]
\[0 \leq x_s \leq 1, \text{ for each set } s \]

2. What is the probability solution is valid?

Let \(S_u \) be sets of \(S \) that contain element \(u \).

\(u \) is covered by \(S_{ALG} \) \iff \(\sum_{S_u} X_s \geq 1 \).

\[\Pr[u \text{ not covered by } S_{ALG}] = \prod_{S_u} (1 - x_s^*), \text{ since } X_s \text{ independent} \]
\[\leq \prod_{S_u} e^{-x_s^*}, \text{ since } 1 + y \leq e^y \text{ for all } y \in \mathbb{R} \]
\[= e^{-\sum_{S_u} x_s^*}, \text{ because of algebra} \]
\[\leq \frac{1}{e} \approx 0.37, \text{ since } \sum_{S_u} x_s^* \geq 1 \]

Highly unlikely \(S_{ALG} \) will cover all \(U \), but each individual element has good likelihood of being covered.

Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation

\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).
 \(u \) is covered by \(S_{ALG} \) \(\iff \sum_{S_u} X_s \geq 1 \).
 \(\Pr[u \text{ not covered by } S_{ALG}] = \prod_{S_u} (1 - x_s^*) \), since \(X_s \) independent
 \(\leq \prod_{S_u} e^{-x_s^*} \), since \(1 + y \leq e^y \) for all \(y \in \mathbb{R} \)
 \(= e^{-\sum_{S_u} x_s^*} \), because of algebra
 \(\leq \frac{1}{e} \approx 0.37 \), since \(\sum_{S_u} x_s^* \geq 1 \)

Highly unlikely \(S_{ALG} \) will cover all \(U \), but each individual element has good likelihood of being covered.
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

Recall: \(x_s^* \) = optimal solutions to LP relaxation
\(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[\begin{align*}
1 - & \text{Add set } s \text{ to our subset } S_{ALG} \text{ with probability of } x_s. \\
2 - & \text{Repeat step 1 } T \text{-times, while adding sets to } S_{ALG}.
\end{align*} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

1. What is the size of the solution?

Recall: \(x^*_s = \text{optimal solutions to LP relaxation} \)
\(X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases} \)

1 - Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

1. What is the size of the solution?
 \[E[ALG] = E\left[\sum_{s \in S_{ALG}} X_s \right] \]

2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).

Recall: \(x^*_s = \) optimal solutions to LP relaxation
\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

1. What is the size of the solution?
 \[
 E[ALG] = E\left[\sum_{s \in S_{ALG}} X_s \right] \\
 \leq E\left[\sum_{t \leq T} \sum_{s \in S_{ALG_t}} X_s \right], \text{ since multiple iterations may select } s
 \]

Recall: \(x_s^* = \) optimal solutions to LP relaxation
\[
X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]

\[+ \]

1 - Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).
2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective:	\(\min \sum_s x_s \)
Subject to:	\(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
	\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

1. What is the size of the solution?

\[
E[ALG] = E\left[\sum_{s \in S_{ALG}} X_s \right] \\
\leq E\left[\sum_{t \leq T} \sum_{s \in S_{ALG_t}} X_s \right], \text{ since multiple iterations may select } s \\
= E\left[\sum_{s \in S} x_s^* \right], \text{ by previous bound } E\left[\sum_{s \in S_{ALG}} X_s \right] = \sum_{s \in S} x_s^*
\]

2. Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

Recall: \(x_s^* = \) optimal solutions to LP relaxation

\[
X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]

3. Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective:	min \(\sum_s x_s \)
Subject to:	\(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
	0 \(\leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

1. What is the size of the solution?

\[
E[ALG] = E\left[\sum_{s \in S_{ALG}} X_s \right] \\
\leq E\left[\sum_{t \leq T} \sum_{s \in S_{ALG_t}} X_s \right], \text{since multiple iterations may select } s \\
= T \sum_{s \in S} x_s^*, \text{by previous bound } E\left[\sum_{s \in S_{ALG}} X_s \right] = \sum_{s \in S} x_s^* \\
Thus, Pr[ALG > 4 \ln 4n OPT]
\]

“What is the chance algorithm is worse than \(ALG \leq 4 \ln 4n OPT \)?”
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n\).

1. What is the size of the solution?

\[
E[ALG] = E \left[\sum_{s \in S_{ALG}} X_s \right] \\
\leq E \left[\sum_{t \leq T} \sum_{s \in S_{ALG_t}} X_s \right], \text{ since multiple iterations may select } s \\
= T \sum_{s \in S} x_s^*, \text{ by previous bound } E \left[\sum_{s \in S_{ALG}} X_s \right] = \sum_{s \in S} x_s^* \\
\]

Thus, \(\Pr[ALG > 4 \ln 4n \ \text{OPT}] \leq \Pr[\sum_{s \in S_{ALG}} X_s > 4T \sum_{s \in S} x_s^*] \)

“What is the chance algorithm is worse than \(ALG \leq 4 \ln 4n \ \text{OPT} \)?”

\[
\text{OPT} \geq \text{OPT}_{LP} = \sum_{s \in S} x_s^*
\]
Set Cover ILP

Objective: $\min \sum_s x_s$
Subject to: $\sum_{s: u \in s} x_s \geq 1$, for each $u \in U$
$0 \leq x_s \leq 1$, for each set s

Suppose $T \geq \ln 4n$, where $|U| = n$.

1. What is the size of the solution?

 $E[ALG] = E\left[\sum_{s \in S_{ALG}} X_s\right]$
 $\leq E\left[\sum_{t \leq T} \sum_{s \in S_{ALG_t}} X_s\right]$, since multiple iterations may select s
 $= T \sum_{s \in S} x^*_s$, by previous bound $E\left[\sum_{s \in S_{ALG}} X_s\right] = \sum_{s \in S} x^*_s$

 Thus, $\Pr[ALG > 4 \ln 4n \text{ OPT}] \leq \Pr[\sum_{s \in S_{ALG}} X_s > 4T \sum_{s \in S} x^*_s]$
 $\leq \frac{1}{4}$, by Markov’s inequality:
 $P(X \geq a) \leq \frac{E[X]}{a}$

2 - Add set s to our subset S_{ALG} with probability of x_s.

2 - Repeat step 1 T-times, while adding sets to S_{ALG}.

Recall: $x^*_s = \text{optimal solutions to LP relaxation}$

$X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}$
Set Cover ILP

Objective:

\[
\min \sum x_s
\]

Subject to:

\[
\sum_{s \in S} x_s \geq 1, \text{ for each } u \in U
\]

\[
0 \leq x_s \leq 1, \text{ for each set } s \in S
\]

Recall:

\[x^*_s = \text{optimal solutions to LP relaxation}
\]

\[X^*_s = \begin{cases} 1, & \text{if } s \in S^* \\ 0, & \text{otherwise} \end{cases}
\]

1. Repeat step 1 \(T\) - times, while adding sets to \(S_{ALG}\).

With probability \(\geq \frac{3}{4}\), \(ALG \leq O(\ln(n))OPT\).

Good enough?

What if we run the algorithm twice?

Probability some run gives: \(ALG \leq O(\ln(n))OPT = 1 - \left(\frac{1}{4}\right)^2 \approx 0.94\)

Three times? \(1 - \left(\frac{1}{4}\right)^3 \approx 0.98\)

Four times? \(1 - \left(\frac{1}{4}\right)^4 \approx 0.996\)

Ten times? \(1 - \left(\frac{1}{4}\right)^{10} \approx 0.999999\)

I.e. Exponential improvement \(\left(1 - \left(\frac{1}{4}\right)^t\right)\) for polynomial time work \(t\).
Set Cover ILP

Objective:

\[
\min \sum x_s
\]

Subject to:

\[
\sum x_s \geq 1, \quad \text{for each } u \in U
\]

0 \leq x_s \leq 1, \quad \text{for each set } s \in S

Recall:

\[
x^*_s = \text{optimal solutions to LP relaxation}
\]

Final algorithm:

\[
\begin{align*}
\text{while } S_{ALG} \text{ is not a cover or } ALG > 4 \ln 4n \sum x^*_s \\
\text{for } t \leq \ln 4n \\
\text{add } \frac{1}{1 - \sum x^*_s}, \text{by previous bound } E[\sum x_S] = \sum x^*_s \\
\end{align*}
\]

\[
T \sum x^*_s, \text{ by previous bound } E[\sum x_S] = \sum x^*_s
\]

Thus, \(\Pr[ALG > 4 \ln 4n OPT] \leq \Pr[\sum x_S > 4T \sum x^*_s] \)

\[
\leq \frac{1}{4}, \text{ by Markov’s inequality}
\]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \) for each \(u \in U \)
\(0 \leq x_s \leq 1, \) for each set \(s \)

Suppose \(T \geq \ln 4n, \) where \(|U| = n. \)

2. What is the probability solution is valid?

Recall: \(x_s^* = \) optimal solutions to LP relaxation
\(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

\[\begin{align*}
1 - & \text{ Add set } s \text{ to our subset } S_{ALG} \text{ with probability of } x_s. \\
2 - & \text{ Repeat step 1 } T\text{-times, while adding sets to } S_{ALG}.
\end{align*} \]
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1, \text{ for each } u \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).

Recall: \(x^*_s = \text{optimal solutions to LP relaxation} \)
\(X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \)

1 - Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).
2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective: \(\min \sum_{s} x_s \)
Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n\).

2. What is the probability solution is valid?

Let \(S_u \) be sets of \(S \) that contain element \(u \).

\[
\Pr[u \text{ not covered by } S_{ALG}] = \prod_{t \leq T} \Pr[u \text{ not covered by } S_{ALG_t}]
\]

Recall: \(x_s^* = \) optimal solutions to LP relaxation

\[
X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]
Set Cover ILP

Objective: \(\min \sum_s x_s \)

Subject to: \(\sum_{s: u \in s} x_s \geq 1 \), for each \(u \in U \)
\(0 \leq x_s \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

2. What is the probability solution is valid?

Let \(S_u \) be sets of \(S \) that contain element \(u \).

\[
\Pr[u \text{ not covered by } S_{ALG}] = \prod_{t \leq T} \Pr[u \text{ not covered by } S_{ALG_t}]
\leq \prod_{t \leq T} \frac{1}{e}, \text{ by previous bound}
\]

Recall: \(x_s^* = \text{optimal solutions to LP relaxation} \)

\[
X_s = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]

1 - Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).

2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective: \(\min \sum_S x_S \)
Subject to: \(\sum_{u \in S} x_S \geq 1 \), for each \(u \in U \)
\(0 \leq x_S \leq 1 \), for each set \(s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).
 \[
 \Pr[u \text{ not covered by } S_{ALG}] = \prod_{t \leq T} \Pr[u \text{ not covered by } S_{ALG_t}]
 \leq \prod_{t \leq T} \frac{1}{e^t}, \text{ by previous bound }
 = \frac{1}{e^T} \leq \frac{1}{4n}, \text{ by plugging in } T \geq \ln 4n
 \]

Recall: \(x_S^* = \text{optimal solutions to LP relaxation} \)
\[
X_S = \begin{cases}
1, & s \in S_{ALG} \\
0, & \text{otherwise}
\end{cases}
\]

1 - Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_S \).
2 - Repeat step 1 \(T \)-times, while adding sets to \(S_{ALG} \).
Set Cover ILP

Objective: \(\min \sum_s x_s \)
Subject to: \(\sum_{s:u \in s} x_s \geq 1, \text{ for each } u \in U \)
\(0 \leq x_s \leq 1, \text{ for each set } s \)

Suppose \(T \geq \ln 4n \), where \(|U| = n \).

2. What is the probability solution is valid?
 Let \(S_u \) be sets of \(S \) that contain element \(u \).
 \[\Pr[u \text{ not covered by } S_{ALG}] = \prod_{t \leq T} \Pr[u \text{ not covered by } S_{ALG_t}] \]
 \[\leq \prod_{t \leq T} \frac{1}{e}, \text{ by previous bound} \]
 \[= \frac{1}{e^T} \leq \frac{1}{4n}, \text{ by plugging in } T \geq \ln 4n \]
 Thus, \(\Pr[S_{ALG} \text{ is not a cover}] \leq \sum_u \Pr[u \text{ not covered by } S_{ALG}] \), by union bound

Recall: \(x^*_s = \) optimal solutions to LP relaxation
\[X_s = \begin{cases} 1, & s \in S_{ALG} \\ 0, & \text{otherwise} \end{cases} \]
Set Cover ILP

<table>
<thead>
<tr>
<th>Objective:</th>
<th>$\min \sum_s x_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject to:</td>
<td>$\sum_{s: u \in s} x_s \geq 1$, for each $u \in U$</td>
</tr>
<tr>
<td></td>
<td>$0 \leq x_s \leq 1$, for each set s</td>
</tr>
</tbody>
</table>

Suppose $T \geq \ln 4n$, where $|U| = n$.

2. What is the probability solution is valid?

Let S_u be sets of S that contain element u.

$$\Pr[u \text{ not covered by } S_{ALG}] = \prod_{t \leq T} \Pr[u \text{ not covered by } S_{ALG_t}]$$

$$\leq \prod_{t \leq T} \frac{1}{e^T}, \text{ by previous bound}$$

$$= \frac{1}{e^T} \leq \frac{1}{4n}, \text{ by plugging in } T \geq \ln 4n$$

Thus, $\Pr[S_{ALG} \text{ is not a cover}] \leq \sum_u \Pr[u \text{ not covered by } S_{ALG}]$, by union bound

$$\leq n \frac{1}{4n} = \frac{1}{4}$$
Set Cover ILP

Suppose $T \geq \ln 4n$, where $U = n$.

2. What is the probability solution is valid?

Let $S_\#$ be sets of S that contain element u.

$$\Pr(u \text{ not covered by } S_(')) = \prod \frac{3}{4} \frac{5}{6} \Pr(u \text{ not covered by } S_(')(\leq \prod \frac{3}{4} \frac{5}{6} \frac{2}{3}, \text{by previous bound})$$

Thus, $\Pr(S_\# \text{ is not a cover}) \leq \sum_u \Pr(u \text{ not covered by } S_{ALG})$, by union bound.

$$\leq n \frac{1}{4n} = \frac{1}{4}$$
Set Cover ILP

Objective: $x_S^* = \text{optimal solutions to LP relaxation}$

Subject to:

While S_{ALG} is not a cover or $ALG > 4 \ln 4n \sum_{s \in S} x_s^*$

For $t \leq \ln 4n$

Add s to S_{ALG} with probability x_s^*

After each iteration of the while loop:

$Pr[S_{ALG} \text{ is not a cover}] \leq \frac{1}{4}$

$Pr[ALG > 4 \ln 4n OPT] \leq \frac{1}{4}$

Thus, $Pr[S_{ALG} \text{ is not a cover}] \leq \sum_u Pr[u \text{ not covered by } S_{ALG}]$, by union bound

$\leq n \frac{1}{4n} = \frac{1}{4}$
Set Cover ILP

1. Add set s to our subset S_{ALG} with probability of x_s.

2. What is the probability solution is valid?

Let $S_{#}$ be sets of S that contain element u.

$$\Pr[u \text{ not covered by } S_{#}] = \prod \frac{3}{4} \frac{5}{4} \Pr[u \text{ not covered by } S_{#}] \leq \prod \frac{3}{4} \frac{5}{4} \% \leq \% : F$$

Thus, $\Pr[S_{#}]$ is not a cover $\leq \% : F = \% : F$.

Recall: $x_{#}^{*}$ = optimal solutions to LP relaxation $X_{#} = 6_{1}$. $s \in S_{#}$

0 , otherwise

2 - Repeat step 1 $T - 1$ times, while adding sets to $S_{#}$.

1 - Add set s to our subset $S_{#}$ with probability of x_s.

After each iteration of the while loop:

$$\Pr[S_{ALG} \text{ is not a cover}] \leq \frac{1}{4}$$

$$\Pr[ALG > 4 \ln 4n OPT] \leq \frac{1}{4}$$

\Rightarrow Probability while loops to second iteration $\leq \frac{1}{2}$

$\Rightarrow E[\# \text{ while loop iterations}] = 2$

Thus, $\Pr[S_{ALG}] \leq n \frac{1}{4n} = \frac{1}{4}$.
Set Cover ILP

Objective:

\(x^*_S = \text{optimal solutions to LP relaxation} \)

Subject to:

- While \(S_{ALG} \) is not a cover or \(ALG > 4 \ln 4n \sum_{S \subseteq S} x^*_S \)
 - For \(t \leq \ln 4n \)
 - Add set \(s \) to \(S_{ALG} \) with probability \(x^*_S \)

In Conclusion: We find a set cover that is at most \(O(\ln n) \)-factor worse than optimal in polynomial expected time.

\[
\operatorname{Pr}[ALG > 4 \ln 4n \cdot \text{OPT}] \leq \frac{1}{4}
\]

\[
\Rightarrow \text{Probability while loops to second iteration} \leq \frac{1}{2}
\]

\[
\Rightarrow E[\# \text{while loop iterations}] = 2
\]

\[
\leq n \frac{1}{4n} = \frac{1}{4}
\]

1. Add set \(s \) to our subset \(S_{ALG} \) with probability of \(x_s \).