
Closest Pair of Points
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Kruskal’s MST Algorithm
Algorithm: Add the edge with smallest weight, that does not create a cycle.
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What are some questions we may have about the algorithm?
1. Is the solution valid? (Does it actually find a spanning tree?)
2. What is the running time?
3. Is the solution optimal?



MST Cut Property
Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof:
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MST Cut Property
Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).
Let 𝒆 be the cheapest edge between 𝑆 and 𝑉\𝑆.
Suppose 𝑻 is a spanning tree that does not include 𝒆. 𝑻 ∪ {𝒆} must have a cycle and that 
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
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cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.
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𝑻′ is a cheaper spanning tree because:
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• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 

𝒆

𝒆′

𝑺
𝑽\𝑺

𝑢

𝑣



MST Cut Property
Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).
Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.
Suppose 𝑇 is a spanning tree that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that 
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.
𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
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Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.
𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
• cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.
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MST Cut Property
Lemma: Suppose that 𝑆 is a subset of nodes from 𝐺 = (𝑉, 𝐸). Then, the cheapest edge 𝑒
between 𝑆 and 𝑉\𝑆 is part of every MST.

Proof: Any MST of 𝐺 must include some edge between 𝑆 and 𝑉\𝑆 (otherwise it would not 
be a tree).
Let 𝑒 be the cheapest edge between 𝑆 and 𝑉\𝑆.
Suppose 𝑇 is a spanning tree that does not include 𝑒. 𝑇 ∪ {𝑒} must have a cycle and that 
cycle must have another edge 𝑒′ between 𝑆 and 𝑉\𝑆. 
Remove 𝑒′ to form 𝑻′ = 𝑇 ∪ {𝑒}\{𝑒′}.
𝑻′ is a cheaper spanning tree because:
• 𝑻′ is a tree (breaking cycle doesn’t disconnect graph) 
• 𝑻′ spans 𝑉 (same number of edges as spanning tree 𝑇)
• cost(𝑻′) < cost(𝑇) since 𝑒′ was replaced by the cheaper 𝑒.

Thus, 𝑻′ is a cheaper spanning tree
⇒ Every MST must include 𝑒.
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Kruskal’s MST Algorithm
Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

??

Lemma: The cheapest 
edge between 𝑆 ⊆ 𝑉 and 
𝑉\𝑆 is part of every MST.



Kruskal’s MST Algorithm
Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. 

1 1 4

3 3

52

7 3

2

𝑢

𝑣
Lemma: The cheapest 
edge between 𝑆 ⊆ 𝑉 and 
𝑉\S is part of every MST.



Kruskal’s MST Algorithm
Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. (or 𝑣 and all nodes connected to 𝑣)
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Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). 
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Kruskal’s MST Algorithm
Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let 𝐺 = (𝑉, 𝐸), and 𝑇 ⊆ 𝐸 be the set of edges resulting from 
Kruskal’s algorithm.

Consider the interation that some edge 𝒆 = (𝑢, 𝑣) is added by Kruskal’s algorithm. Let 𝑺
be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest edge that 
crosses the cut (otherwise the cheaper edge would have been selected since it would 
not have created a cycle either). 
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be the set of 𝑢 and all nodes already connected to 𝑢. Clearly 𝑢 ∈ 𝑺 and 𝑣 ∈ 𝑽\𝑺
(otherwise adding 𝒆 would have created a cycle). We are picking the cheapest that 
crosses the cut (otherwise the cheaper edge would have been selected since it would 
not have created a cycle either). By the cut property lemma, this edge must be part of 
the MST.
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Thus, every edge found by 
Kruskal’s algorithm is part 
of the MST, and since the 
edges found form a 
spanning tree, it is the MST.



Closest Pair Problem

Given 𝑛 points, find a pair of points with the 
smallest distance between them. 

(𝑥, 𝑦)



Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = ?

P1 P2 ... Pn
P1 / d1,2 ... d1,n
P2 d2,1 / ... d2,n
… ... … ... ...
Pn dn,1 dn,2 ... /

(𝑥, 𝑦)
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Closest Pair Problem

Simple solution:
1. Compute distance for each pair.
2. Select smallest.

Running Time = 𝑂 𝑛!

P1 P2 ... Pn
P1 / d1,2 ... d1,n
P2 d2,1 / ... d2,n
… ... … ... ...
Pn dn,1 dn,2 ... /

(𝑥, 𝑦)

Can we do better?



Closest Pair Problem
(𝑥, 𝑦)

P1 P2 ... Pn
P1 / d1,2 ... d1,n
P2 d2,1 / ... d2,n
… ... … ... ...
Pn dn,1 dn,2 ... /

• Divide into subproblems that are smaller instances of the original.
• “Conquer” the subproblems by solving them recursively.
• Combine subproblem solutions into solution for original problem.

Divide and Conquer Algorithms:



Closest Pair Problem – Divide and Conquer

How can we make the problem 
smaller and easier?



Closest Pair Problem – Divide and Conquer

How can we make the problem 
smaller and easier?

Split it up!



Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that 
half of the points are on each side?



Closest Pair Problem – Divide and Conquer

Divide: How can we draw line so that 
half of the points are on each side?
1. Sort by 𝑥-coordinate.
2. Put 𝐿 at median value.

𝐿



Closest Pair Problem – Divide and Conquer

Conquer:

Recursively find closest 
pairs on each side1.

1Details to follow

𝐿



Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left 
pair and the closest right pair, how 
do we determine actual closest?

𝐿



Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left 
pair and the closest right pair, how 
do we determine actual closest?
1. Return minimum of: 𝑑leM, 𝑑right.
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Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left 
pair and the closest right pair, how 
do we determine actual closest?
1. Return minimum of: 𝑑leM, 𝑑right.
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Closest Pair Problem – Divide and Conquer

Combine: If we had the closest left 
pair and the closest right pair, how 
do we determine actual closest?
1. Return minimum of: 𝑑leM, 𝑑right, 
𝑑min_straddle.

𝐿



Closest Pair Problem – Divide and Conquer

How should we search for “straddle 
points”?

We know 𝛿 = min(𝑑leM, 𝑑right).

𝐿



Closest Pair Problem – Divide and Conquer

How should we search for “straddle 
points”?

We know 𝛿 = min(𝑑leM, 𝑑right).

Do we need to consider this point 
when looking for straddle points?

𝐿



Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for 
straddle points at most 𝛿 away 
from 𝐿.

Reason: Points outside 𝐿 ± 𝛿 cannot 
reach the other side in less than 𝛿.

𝐿-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Rule: We only need to hunt for 
straddle points at most 𝛿 away 
from 𝐿.

Reason: Points outside 𝐿 ± 𝛿 cannot 
reach the other side in less than 𝛿.

Let 𝑺 be the set of straddle points.𝐿-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Can we just compare all left 
straddle points to all right straddle 
points?

𝐿-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Can we just compare all left 
straddle points to all right straddle 
points?

So, we need to reduce the number 
of straddle points we have to 
consider.

𝐿-𝛿 +𝛿



Closest Pair Problem – Divide and Conquer

Divide 𝑆 into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

𝐿-𝛿 +𝛿𝛿
2



Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

Yes – we only care about 
points within 𝛿.

-𝛿 +𝛿𝐿𝛿
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Closest Pair Problem – Divide and Conquer

Divide S into "
!
× "
!

boxes.

Can we focus our search to certain 
boxes?

Yes – we only care about 
points within 𝛿.

This still gives us possibly lots of 
points to look at.
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Closest Pair Problem – Divide and Conquer

Can we have multiple points in 
one box?

-𝛿 +𝛿𝐿𝛿
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Closest Pair Problem – Divide and Conquer

Can we have multiple points in 
one box?

No. 𝛿 is the smallest distance 
on either side of L.

⇒ at most one point per box.

-𝛿 +𝛿𝐿𝛿
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Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

1. Sort straddle points by 𝑦
coordinate. 

2. Only possible “𝛿-busting” 
points are the 11 points after 
our point being considered. 𝐿𝛿

2



Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

Straddle point hunting:
𝑂(𝑛!) ⟶ 𝑂(𝑛 log 𝑛)

𝐿𝛿
2


