Closest Pair of Points
CSCI 532



Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?
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3. Is the solution optimal?
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Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).
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Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.
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 T'isatree (breaking cycle doesn’t disconnect graph)
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Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. Clearlyu € Sand v €

(otherwise adding e would have created a cycle). We are picking the cheapest that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Thus, every edge found by
Kruskal’s algorithm is part

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

of the MST, and since the
edges found form a
spanning tree, it is the MST.




Closest Pair Problem

Given n points, find a pair of points with the
smallest distance between them.
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Closest Pair Problem
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Divide and Conquer Algorithms:
* Divide into subproblems that are smaller instances of the original.

 “Conquer” the subproblems by solving them recursively.
e Combine subproblem solutions into solution for original problem.



Closest Pair Problem — Divide and Conquer
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How can we make the problem
smaller and easier?

Split it up!
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Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by x-coordinate.
2. Put L at median value.




Closest Pair Problem — Divide and Conquer

Conquer:

1Details to follow



Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?
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pair and the closest right
do we determine actual c

1. Return minimum of: d

dmin_straddle°

Combine: If we had the closest left

nair, how
osest?

eft drightr
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Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|ft, dright)-

Do we need to consider this point
| when looking for straddle pointsl
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Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L £ 6 cannot
reach the other side in less than 6.
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Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L £ 6 cannot
reach the other side in less than 6.

Let S be the set of straddle points.




Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?




Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

So, we need to reduce the number
of straddle points we have to
consider.
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Closest Pair Problem — Divide and Conquer

N <

.. . O O
Divide S into > X P boxes.

Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

This still gives us possibly lots of
points to look at.



Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?




Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

No. O is the smallest distance
on either side of L.

= at most one point per box.




Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

1. Sort straddle points by y
coordinate.

2. Only possible “6-busting”
points are the 11 points after
our point being considered.

>
N <
b‘_
+
S,



Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

Straddle point hunting:
0(n%) — O0(nlogn)

>
N <
h_
+
S,



