Closest Pair of Points
CSCI 532

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

What are some questions we may have about the algorithm?

L e Lt el B . s find : 2

3. Is the solution optimal?

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof:

V\S

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between § and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.
T' is a cheaper spanning tree because: e

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

T' is a cheaper spanning tree because: e
 T'isatree (breaking cycle doesn’t disconnect graph)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

T' is a cheaper spanning tree because: e
 T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

T' is a cheaper spanning tree because: e
 T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
« cost(T') < cost(T) since e’ was replaced by the cheaper e.

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

T' is a cheaper spanning tree because: e
 T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
« cost(T') < cost(T) since e’ was replaced by the cheaper e.

Thus, T' is a cheaper spanning tree

MST Cut Property

Lemma: Suppose that S is a subset of nodes from G = (V, E). Then, the cheapest edge e
between S and V\S is part of every MST.

Proof: Any MST of G must include some edge between S and I'\S (otherwise it would not
be a tree).

Let e be the cheapest edge between S and V\S.

Suppose T is a spanning tree that does not include e. T U {e} must have a cycle and that
cycle must have another edge e’ between S and /\S.

Remove e’ toform T’ = T U {e}\{e'}.

T' is a cheaper spanning tree because: e
 T'isatree (breaking cycle doesn’t disconnect graph)
* T'spansV (same number of edges as spanning tree T)
« cost(T') < cost(T) since e’ was replaced by the cheaper e.

Thus, T' is a cheaper spanning tree
= Every MIST must include e.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

??

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm.

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. (or v and all nodes connected to v)

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. Clearlyu € Sand v €
(otherwise adding e would have created a cycle).

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. Clearlyu € Sand v €

(otherwise adding e would have created a cycle). We are picking the cheapest edge that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either).

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. Clearlyu € Sand v €

(otherwise adding e would have created a cycle). We are picking the cheapest that
crosses the cut (otherwise the cheaper edge would have been selected since it would

not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

Kruskal’s MIST Algorithm

Algorithm: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: Let G = (V,E), and T € E be the set of edges resulting from
Kruskal’s algorithm.

Consider the interation that some edge e = (u, v) is added by Kruskal’s algorithm. Let
be the set of u and all nodes already connected to u. Clearlyu € Sand v €

(otherwise adding e would have created a cycle). We are picking the cheapest that
crosses the cut (otherwise the cheaper edge would have been selected since it would
not have created a cycle either). By the cut property lemma, this edge must be part of
the MST.

Thus, every edge found by
Kruskal’s algorithm is part

Lemma: The cheapest
edge between S € V and
V\S is part of every MST.

of the MST, and since the
edges found form a
spanning tree, it is the MST.

Closest Pair Problem

Given n points, find a pair of points with the
smallest distance between them.

Closest Pair Problem

P, | P, P,
Pi| / |dyo]|...|dq4,
P2 d2’1 / . d2,n
I:)n dn,1 dn 2 /

Simple solution:

1. Compute distance for each pair.
2. Select smallest.
Running Time =7

Closest Pair Problem

P, | P, P,
Pi| / |dyo|...|dq,
P2 d2’1 / . d2,n
I:)n dn,1 dn 2 /

Simple solution:

1. Compute distance for each pair.
2. Select smallest.
Running Time = 0(n?)

Closest Pair Problem

1. Compute distance for each pair.
2. Select smallest.
Running Time = 0(n?)

Closest Pair Problem

xy) o ®
° . ° Py | P P,
° P, /[|dq, dqn

®)

[¢ ® P2 d2’1 / d2n

[

° . °

[- o Pn dn"] dn2 /
Y L

Divide and Conquer Algorithms:
* Divide into subproblems that are smaller instances of the original.

 “Conquer” the subproblems by solving them recursively.
e Combine subproblem solutions into solution for original problem.

Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?

Closest Pair Problem — Divide and Conquer

How can we make the problem
smaller and easier?

Split it up!

Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

Closest Pair Problem — Divide and Conquer

Divide: How can we draw line so that
half of the points are on each side?

1. Sort by x-coordinate.
2. Put L at median value.

Closest Pair Problem — Divide and Conquer

Conquer:

1Details to follow

Closest Pair Problem — Divide and Conquer

Combine: If we had the closest left
pair and the closest right pair, how
do we determine actual closest?

Closest Pair Problem — Divide and Conquer

pair and the closest right
do we determine actual c

1. Return minimum of: d

Combine: If we had the closest left

nair, how
osest?

eft dright-

Closest Pair Problem — Divide and Conquer

pair and the closest right
do we determine actual c

1. Return minimum of: d

Combine: If we had the closest left

nair, how
osest?

eft dright-

Closest Pair Problem — Divide and Conquer

pair and the closest right
do we determine actual c

1. Return minimum of: d

dmin_straddle°

Combine: If we had the closest left

nair, how
osest?

eft drightr

Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|ft, dright)-

Closest Pair Problem — Divide and Conquer

How should we search for “straddle
points”?

We know 6 = min(d|ft, dright)-

Do we need to consider this point
| when looking for straddle pointsl

Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L £ 6 cannot
reach the other side in less than 6.

Closest Pair Problem — Divide and Conquer

Rule: We only need to hunt for
straddle points at most 6 away
from L.

Reason: Points outside L £ 6 cannot
reach the other side in less than 6.

Let S be the set of straddle points.

Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

Closest Pair Problem — Divide and Conquer

Can we just compare all left
straddle points to all right straddle
points?

So, we need to reduce the number
of straddle points we have to
consider.

Closest Pair Problem — Divide and Conquer

..) O O
Divide S into P X P boxes.

Can we focus our search to certain
boxesl

Closest Pair Problem — Divide and Conquer

. .)
Divide S into > X P boxes.
Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

Closest Pair Problem — Divide and Conquer

N <

.. . O O
Divide S into > X P boxes.

Can we focus our search to certain
boxes?

Yes — we only care about
points within 0.

This still gives us possibly lots of
points to look at.

Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

Closest Pair Problem — Divide and Conquer

Can we have multiple points in
one box?

No. O is the smallest distance
on either side of L.

= at most one point per box.

Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

1. Sort straddle points by y
coordinate.

2. Only possible “6-busting”
points are the 11 points after
our point being considered.

>
N <
b‘_
+
S,

Closest Pair Problem — Divide and Conquer

Only care about certain boxes
+ At most one point per box

Fixed number of points to check

Straddle point hunting:
0(n%) — O0(nlogn)

>
N <
h_
+
S,

