
Closest Pair of Points
CSCI 532

Closest Pair Problem – Divide and Conquer

𝐿

Closest Pair Problem – Divide and Conquer

𝐿-𝛿 +𝛿

Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

Straddle point hunting:
𝑂(𝑛!) ⟶ 𝑂(𝑛 log 𝑛)

𝐿𝛿
2

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝒅le, and 𝒅right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

findClosestPair(𝑃):

Closest Pair Problem – Divide and Conquer

Recursive Process:

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
𝑑le; and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
𝑑le; and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
𝑑le; and 𝑑right is trivial.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
𝑑le; and 𝑑right is trivial.

When is finding 𝑑le; and 𝑑right trivial?

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until determining
𝑑le; and 𝑑right is trivial.

When is finding 𝑑le; and 𝑑right trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.

When is finding 𝑑le; and 𝑑right trivial?

When there are one or two points
on the left and right sides.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

Recursively find closest
pairs on each side1.
Recursively find closest
pairs on each side.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

Closest Pair Problem – Divide and Conquer

Recursive Process:
1. Divide points in half.
2. Repeat step 1 until there are only

one or two points on each side.
3. Combine left and right sides to

find closest of subproblems.
4. Repeat until initial division is

combined.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝒅le, and 𝒅right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝒅le# = findClosestPair(𝑷le#)
𝒅right = findClosestPair(𝑷right)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Questions?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Valid?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Valid?
It’s returning the distance
between two points in P.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Optimal?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Optimal?
If there was a closer pair, they
would have been compared
on the left side, right side, or
as a straddle point.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.

2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Running Time?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord.

6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿.
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

How much work is
done at the first level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂(𝑛 log 𝑛) How much work is
done at the first level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂(𝑛 log 𝑛)

Split into 𝑃le#, 𝑃right
and do how much
work on each?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 2)

Split into 𝑃le#, 𝑃right
and do how much
work on each?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)
Height = ??

Binary tree, divide
by 2 each level?

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right. TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)Can we do better?

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Option 1: (Significantly) Reduce the height of the recursion tree.
Option 2: (Significantly) Reduce the amount of work done at each level.

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Maybe we don’t need
to sort so often??

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log! 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌).

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌. 𝑶 𝒏
2. Determine 𝑑leC and 𝑑right.

3. Let 𝛿 = min(𝑑leC, 𝑑right). 𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0. Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏

Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total
Running = ??
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = ??
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log 𝑛
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Closest Pair Problem – Algorithm

𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total
Running = 𝑂 𝑛 log 𝑛
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Can we do better?

Dynamic Programing

Trick-or-treat planning.

Dynamic Programing

Trick-or-treating at the red house, blue house, and green
house are the fewest stops you need to fill your 25-pound
capacity sack.

Dynamic Programing

Trick-or-treating at the red house, blue house, and green
house are the fewest stops you need to fill your 25-pound
capacity sack. The blue house gives you 5 pounds of candy.
What can you conclude?

Dynamic Programing

Trick-or-treating at the red house, blue house, and green
house are the fewest stops you need to fill your 25-pound
capacity sack. The blue house gives you 5 pounds of candy.
What can you conclude?

The red house and the green house are the fewest stops you
need to get 20+ pounds of candy.

Dynamic Programing

Trick-or-treating at the red house, blue house, and green
house are the fewest stops you need to fill your 25-pound
capacity sack. The blue house gives you 5 pounds of candy.
What can you conclude?

The red house and the green house are the fewest stops you
need to get 20+ pounds of candy.

A problem exhibits optimal substructure if removing part of an optimal
solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming: Leverage optimal sub-structure.

Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) = Directed graph with no cycles.

a
b

c

d

e

f a
b

c

d

e

f

ü û

fa
b

c

d

e

Longest Path in a DAG
Given a DAG, find the longest path between any two vertices
in the graph.

fa
b

c

d

e

Longest Path in a DAG

fa

b

c

d

e

fa

b

c

d

e

fa

b

c

d

e

fa

b

c

d

e

length = 3 length = 4 length = 4 length = 5

Given a DAG, find the longest path between any two vertices
in the graph.

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day

fa
b

c

d

e

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day

fa
b

c

d

e

Length = 2 + 4 + 2 + 1 = 9 days

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day

fa
b

c

d

e

Length = 2 + 4 + 2 + 1 +1 = 10 days

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day

fa
b

c

d

e

Length = 2 + 1 + 4 + 2 + 1 +1 = 11 days

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day

fa
b

c

d

e

Length = 2 + 1 + 4 + 2 + 1 +1 = 11 days

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
g Photograph venue 1 day

fa
b

c

d

e

g

If any task on critical path is delayed, project is delayed.

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
g Photograph venue 1 day

fa
b

c

d

e

g

If any task on critical path is delayed, project is delayed.

Length = 2 + 1 + 4 + 2 + 1 +1 = 11 days

Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
g Photograph venue 10 days

fa
b

c

d

e

g

If any task on critical path is delayed, project is delayed.

Length = 2 + 10 +1 = 13 days

fa
b

c

d

e

Find the Longest Path in a DAG

How do we do this?

Number of edges.
No vertex weights.

Given a DAG, find the longest path between any two vertices
in the graph.

Find the Longest Path in a DAG

Interesting observations?

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, what could we
say about the part of that path to b?

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the
longest path that ends at b.

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the
longest path that ends at b. If not, then we could make a longer path.

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

The longest path to e = ??

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

The longest path to e = max
longest path to b
longest path to c
longest path to d

+ 1

a
b

c

d

e

Find the Longest Path in a DAG

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest
path to e

=

Find the Longest Path in a DAG

When are we ready to calculate
the longest path to e?

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest
path to e

=

Find the Longest Path in a DAG

When are we ready to calculate
the longest path to e?

When we have the longest
paths to b, c, and d.

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest
path to e

=

