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Closest Pair Problem – Divide and Conquer

Only care about certain boxes

-𝛿 +𝛿

At most one point per box+
Fixed number of points to check

Straddle point hunting:
𝑂(𝑛!) ⟶ 𝑂(𝑛 log 𝑛)

𝐿𝛿
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1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

. 

2. Determine 𝑑leC and 𝑑right. 

3. Let 𝛿 = min(𝑑leC, 𝑑right).

4. Let 𝑆 be straddle points within 𝛿 of 𝐿.  
5. Sort 𝑆 by 𝑦-coord. 

6. Compare points in 𝑆 to next 11 points and update 𝛿.  
7. Return 𝛿. 

Closest Pair Problem – Algorithm

findClosestPair(𝑃):
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5. Sort 𝑆 by 𝑦-coord. 

6. Compare points in 𝑆 to next 11 points and update 𝛿.  
7. Return 𝛿. 

Closest Pair Problem – Algorithm

Recursively find closest 
pairs on each side1.
Recursively find closest 
pairs on each side.
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When is finding 𝑑le; and 𝑑right trivial?

When there are one or two points 
on the left and right sides. 
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1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right
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le#
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right
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Split into 𝑃le#, 𝑃right
and do how much 
work on each? 



1. Sort points by 𝑥-coord, find 𝐿, make 𝑃
le#

, 𝑃
right

.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.  TBD
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Split into 𝑃le#, 𝑃right
and do how much 
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𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)
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le#

, 𝑃
right

.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.  TBD

3. Let 𝛿 = min(𝑑leC, 𝑑right).  𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
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Closest Pair Problem – Algorithm

findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)
Height = ??

Binary tree, divide 
by 2 each level?
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findClosestPair(𝑃):

𝑂((𝑛 log 𝑛) / 4)
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6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)
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Option 1: (Significantly) Reduce the height of the recursion tree.
Option 2: (Significantly) Reduce the amount of work done at each level.
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3. Let 𝛿 = min(𝑑leC, 𝑑right).  𝑶(𝟏)
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Closest Pair Problem – Algorithm

findClosestPair(𝑃):
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.  𝑶 𝒏 𝐥𝐨𝐠𝒏
2. Determine 𝑑leC and 𝑑right.  

3. Let 𝛿 = min(𝑑leC, 𝑑right).  𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

Closest Pair Problem – Algorithm

findClosestPair(𝑃):

Maybe we don’t need 
to sort so often??



Closest Pair Problem – Algorithm

𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

𝑂(𝑛 log 𝑛)

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log! 𝑛
Time

𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4) 𝑂((𝑛 log 𝑛) / 4)

𝑂((𝑛 log 𝑛) / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.
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0.  Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 
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findClosestPair(𝑃):
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findClosestPair(𝑃):

1. Sort points by 𝑥-coord, find 𝐿, split 𝑋, 𝑌.  𝑶 𝒏
2. Determine 𝑑leC and 𝑑right. 

3. Let 𝛿 = min(𝑑leC, 𝑑right).  𝑶(𝟏)

4. Let 𝑆 be straddle points within 𝛿 of 𝐿. 𝑶(𝒏)
5. Sort 𝑆 by 𝑦-coord. 𝑶 𝒏 𝐥𝐨𝐠𝒏
6. Compare points in 𝑆 to next 11 points and update 𝛿. 𝑶(𝒏)
7. Return 𝛿. 𝑶(𝟏)

0.  Sort points by 𝑥-coordinate (𝑋) and 𝑦-coordinate (𝑌). 𝑶 𝒏 𝒍𝒐𝒈𝒏
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Height = 𝑂 log 𝑛
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Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.
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Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.
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Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log 𝑛
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Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.
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𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

𝑂(𝑛)

Height = 𝑂 log 𝑛

Total 
Running = 𝑂 𝑛 log 𝑛
Time

𝑂(𝑛 / 4) 𝑂(𝑛 / 4) 𝑂(𝑛 / 4)

𝑂(𝑛 / 2)

Plan:
• Presort by 𝑥-coordinate (𝑋)
• Presort by 𝑦-coordinate (𝑌)
• Split 𝑋 and 𝑌 by comparing to 𝐿.

Can we do better?



Dynamic Programing

Trick-or-treat planning.
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need to get 20+ pounds of candy.



Dynamic Programing

Trick-or-treating at the red house, blue house, and green 
house are the fewest stops you need to fill your 25-pound 
capacity sack. The blue house gives you 5 pounds of candy.  
What can you conclude?

The red house and the green house are the fewest stops you 
need to get 20+ pounds of candy.

A problem exhibits optimal substructure if removing part of an optimal 
solution results in an optimal solution to a smaller problem.

Central tenant of Dynamic Programming: Leverage optimal sub-structure.



Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) = Directed graph with no cycles.
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Longest Path in a DAG
Given a DAG, find the longest path between any two vertices 
in the graph.
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length = 3 length = 4 length = 4 length = 5

Given a DAG, find the longest path between any two vertices 
in the graph.



Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines 
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
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Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
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Task Description Duration
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c Select date/time 1 day
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f Market event 1 day
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If any task on critical path is delayed, project is delayed.
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the minimum time to complete project.
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Critical Path: Sequence of dependent tasks that determines 
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
g Photograph venue 1 day
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Length = 2 + 1 + 4 + 2 + 1 +1 = 11 days



Find the Longest Path in a DAG

Critical Path: Sequence of dependent tasks that determines 
the minimum time to complete project.

Task Description Duration
a Select location 2 days
b Get permits 4 days
c Select date/time 1 day
d Hire vendors 2 days
e Make flyers 1 day
f Market event 1 day
g Photograph venue 10 days

fa
b

c

d

e

g

If any task on critical path is delayed, project is delayed.

Length = 2 + 10 +1 = 13 days
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Find the Longest Path in a DAG

How do we do this?

Number of edges. 
No vertex weights.

Given a DAG, find the longest path between any two vertices 
in the graph.
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Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, what could we 
say about the part of that path to b?
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Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the   
longest path that ends at b. 

a
b

c

d

e



Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the   
longest path that ends at b. If not, then we could make a longer path.
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Find the Longest Path in a DAG

Interesting observations?

The longest path to e =  ??
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Find the Longest Path in a DAG

Interesting observations?

The longest path to e = max
longest path to b
longest path to c
longest path to d

+ 1
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Find the Longest Path in a DAG

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest 
path to e

=



Find the Longest Path in a DAG

When are we ready to calculate 
the longest path to e?

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest 
path to e

=



Find the Longest Path in a DAG

When are we ready to calculate 
the longest path to e?

When we have the longest 
paths to b, c, and d.

a
b

c

d

e

max
longest path to b
longest path to c
longest path to d

+ 1longest 
path to e

=


