
Dynamic Programming
CSCI 532

fa
b

c

d

e

Longest Path in a DAG

fa

b

c

d

e

fa

b

c

d

e

fa

b

c

d

e

fa

b

c

d

e

length = 3 length = 4 length = 4 length = 5

Given a DAG, find the longest path between any two vertices
in the graph.

Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the
longest path that ends at b. If not, then we could make a longer path.

a
b

c

d

e

Find the Longest Path in a DAG

Interesting observations?

The longest path to e = max
longest path to b
longest path to c
longest path to d

+ 1

a
b

c

d

e

Find the Longest Path in a DAG

In general: We are ready to calculate the longest path to a
vertex if we know the longest path for all incoming neighbors.

a
b

c

d

e

Find the Longest Path in a DAG

Topological Ordering of a graph: ordering of its vertices such that for every
directed edge (𝑢, 𝑣), vertex 𝑢 comes before vertex 𝑣 in the ordering.

a
b

c

d

e

Topological Ordering

Topologically Ordered:

{a, c, b, d, e, f}

fa
b

c

d

e

ü

Topological Ordering

Topologically Ordered:

{a, c, b, d, e, f}
{a, c, b, e, d, f}

fa
b

c

d

e

ü
û

Topological Ordering

Topologically Ordered:

{a, c, g, b, d, e, f}
{a, c, b, d, e, g, f}

fa
b

c

d

e

g

ü
ü

Topological Ordering

• There are various algorithms to find topological orderings
• Standard running time = 𝑂(|𝑉| + |𝐸|).

fa
b

c

d

e

g

Find the Longest Path in a DAG

Plan:
• ??

b

c

d

e

g

a f

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

Length of longest
path that ends at c.

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 0 0 0 1

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

(Or 0 if there are no incoming neighbors)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

• Largest value in array = Longest path.

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let Vsort be topologically sort vertices
for each vertex v in Vsort:

for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:

pathLengths[v] = pathLengths[n] + 1
return maxValue(pathLengths)

Find the Longest Path in a DAG

Running time: ?

Find the Longest Path in a DAG

Running time: 𝑶(Topological Sort +|𝑽|𝟐) ∈ 𝑶(|𝑽|𝟐)

longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let Vsort be topologically sort vertices
for each vertex v in Vsort:

for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:

pathLengths[v] = pathLengths[n] + 1
return maxValue(pathLengths)

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

• Largest value in array = Longest path.

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest
path that ends at each vertex.

• For each vertex in order, calculate
longest path as:

• Largest value in array = Longest path.

b

c

d

e

g

a f

max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1So, w

hat’s
the path??

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- - - - - - -

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- - - - - - -

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

- - - - - - -

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

- - a - - - -

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

- - a - - - a

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 0 0 0 1

- c a - - - a

For each vertex in order, calculate
longest path as:
max! longest path to 𝑛 + 1,
for all incoming neighbors 𝑛.

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d <- b

Find the Longest Path in a DAG

Plan:
• Make second array that tracks where

longest path came from.
• When neighbor with longest path is

determined, save that neighbor.
• Backtrack through array to construct

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d <- b <- c <- a

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

ü û

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

ü û

tree

tree

Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph. Root

Leaf Child of d

Parent of e

a
b

c

d

e
f Vertices (or Nodes)

Edges 𝑮 = (𝑽, 𝑬)

a
b

c

d

f e

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

ü û

tree

tree

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover.

l

Vertex Cover in Trees

b
a

e f

g h j ki

m

d

c

Imagine the minimum vertex cover.

l

Vertex Cover in Trees

a

d

c

e f

g h j ki

m

b

Imagine the minimum vertex cover.

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a?

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

If a is not in a minimum VC
l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = ??

If a is not in a minimum VC

𝑓(𝑎) = ??l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = ??

l

Vertex Cover in Trees

b

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + ??

a

l

l

Vertex Cover in Trees

b

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓 𝑎 = 1 + ??

a

l

Vertex Cover in Trees

b

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

a

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

l

Vertex Cover in Trees

b

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

a

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

“If there was a smaller VC
rooted at b, it would give us
a smaller VC rooted at a.”

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = ??l

Vertex Cover in Trees

a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + ??

b

l

l

Vertex Cover in Trees

a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

b

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)

