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Longest Path in a DAG

Given a DAG, find the longest path between any two vertices

in the graph.
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Interesting observations?

If the longest path goes from a to e and passes through b, that must be the
longest path that ends at b. If not, then we could make a longer path.
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Interesting observations: ongest path to b

The longest path to e = max( ongest pathtoc |+ 1
ongest path to d
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In general: We are ready to calculate the longest path to a
vertex if we know the longest path for all incoming neighbors.
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Topological Ordering of a graph: ordering of its vertices such that for every
directed edge (u, v), vertex u comes before vertex v in the ordering.
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 There are various algorithms to find topological orderings
* Standard running time = O(|V| + |E]).
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path that ends at each vertex. Q
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.

(Or O if there are no incoming neighbors)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.

(Or 0 if there are no incoming neighbors)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
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for all incoming neighbors n.

(Or O if there are no incoming neighbors)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.

(Or O if there are no incoming neighbors)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
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(Or O if there are no incoming neighbors)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.

* Largest value in array = Longest path.
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longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let V..« be topologically sort vertices
for each vertex v 1n V g ¢:
for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:
pathLengths[v] = pathLengths[n] + 1
return maxvalue(pathLengths)

Running time: ?
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longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let V..« be topologically sort vertices
for each vertex v 1n V g ¢:
for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:
pathLengths[v] = pathLengths[n] + 1
return maxvalue(pathLengths)

Running time: O (Topological Sort +|V|%) € O(|V|%)
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Plan:
* Topologically sort vertices.

* Make array to store length of longest
path that ends at each vertex.

 For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.

* Largest value in array = Longest path.
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Plan:

* Topologically sort vertices

b »(d
A
f)
v
© (e
{a,c, g, b,d, e,f}
e g
1




Find the Longest Path in a DAG

b >d
Plan: ¢ 0
* Make second array that tracks where v
© G
longest path came from.
&

{a,c, g, b,d, e,f}

a b ¢ d e

0Q

o
[EN
U
—




Find the Longest Path in a DAG

b >d
Plan: ¢ O
* Make second array that tracks where v
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 When neighbor with longest path is Q

determined, save that neighbor.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

For each vertex in order, calculate
longest path as:
max,, (longest pathton) + 1,
for all incoming neighbors n.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

For each vertex in order, calculate
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Plan:

* Make second array that tracks where
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 When neighbor with longest path is
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Plan:

* Make second array that tracks where
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

For each vertex in order, calculate
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

For each vertex in order, calculate
longest path as:
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for all incoming neighbors n.
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determined, save that neighbor.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.

path: f<-e
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.
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Plan:

* Make second array that tracks where
longest path came from.

 When neighbor with longest path is
determined, save that neighbor.

e Backtrack through array to construct
path.

path:f<-e<-d<-b<-c<-a
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Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.
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Vertex Cover: Given graph, find the smallest subset of vertices such

that every edge in the graph has at least one vertex in the subset.
tree




Special Graphs

N
(a; Vertices (or Nodes)} G = (V.E)

Edges
© @

 Connected Graph = Graph that has a path between every vertex pair.
* Acyclic Graph = Graph with no cycles.
* Directed Acyclic Graph (DAG) = Directed graph with no cycles.

* Tree = Connected acyclic graph. Ol Root
4 Parentof e

o Child of d
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Vertex Cover: Given graph, find the smallest subset of vertices such

that every edge in the graph has at least one vertex in the subset.
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Vertex Cover In Trees

Imagine the minimum vertex cover.
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Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.
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Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.
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Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.
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Imagine the minimum vertex cover. What can we say
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Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

......
.........

“If there was a smaller VC
rooted at b, it would give us
a smaller VC rooted at a.”
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Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If 3 is in @ minimum VC
(D fla)=1+71(b)+ f(c)
i If 2 is not in @ minimum VC
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Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If 3 is in @ minimum VC
(D fla)=1+71(b)+ f(c)
i If 2 is not in @ minimum VC

f(a) =2+ ??




Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If ais not in @ minimum VC

flay=2+7f(d)+f(e)+f(f)




