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Longest Path in a DAG
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Given a DAG, find the longest path between any two vertices 
in the graph.



Find the Longest Path in a DAG

Interesting observations?

If the longest path goes from a to e and passes through b, that must be the   
longest path that ends at b. If not, then we could make a longer path.
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Find the Longest Path in a DAG

Interesting observations?

The longest path to e = max
longest path to b
longest path to c
longest path to d

+ 1
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Find the Longest Path in a DAG

In general: We are ready to calculate the longest path to a 
vertex if we know the longest path for all incoming neighbors.
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Find the Longest Path in a DAG

Topological Ordering of a graph: ordering of its vertices such that for every 
directed edge (𝑢, 𝑣), vertex 𝑢 comes before vertex 𝑣 in the ordering.
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Topological Ordering

Topologically Ordered:

{a, c, b, d, e, f}
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Topological Ordering

Topologically Ordered:

{a, c, b, d, e, f}
{a, c, b, e, d, f}
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Topological Ordering

Topologically Ordered:

{a, c, g, b, d, e, f}
{a, c, b, d, e, g, f}

fa
b

c

d

e

g

ü
ü



Topological Ordering

• There are various algorithms to find topological orderings
• Standard running time = 𝑂(|𝑉| + |𝐸|).
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Find the Longest Path in a DAG

Plan:
• ??
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Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.
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{a, c, g, b, d, e, f}



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

Length of longest 
path that ends at c.



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:

b

c

d

e

g

a f

max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 0 0 0 1

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:
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a f

max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

(Or 0 if there are no incoming neighbors)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:

• Largest value in array = Longest path.
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1



longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let Vsort be topologically sort vertices 
for each vertex v in Vsort:

for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:

pathLengths[v] = pathLengths[n] + 1 
return maxValue(pathLengths)

Find the Longest Path in a DAG

Running time: ?



Find the Longest Path in a DAG

Running time: 𝑶(Topological Sort +|𝑽|𝟐) ∈ 𝑶(|𝑽|𝟐)

longest_path(G=(V,E)):
pathLengths = [0,...,0]
Let Vsort be topologically sort vertices 
for each vertex v in Vsort:

for each incoming neighbor n of v:
if pathLengths[n] + 1 > pathLengths[v]:

pathLengths[v] = pathLengths[n] + 1 
return maxValue(pathLengths)



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:

• Largest value in array = Longest path.
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1



Find the Longest Path in a DAG

Plan:
• Topologically sort vertices.

• Make array to store length of longest 
path that ends at each vertex.

• For each vertex in order, calculate 
longest path as:

• Largest value in array = Longest path.
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max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1So, w

hat’s 
the path??



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- - - - - - -



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- - - - - - -



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 0 0 0 0 0

- - - - - - -

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

- - - - - - -

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 0

- - a - - - -

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 0 1 0 0 0 1

- - a - - - a

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 0 0 0 1

- c a - - - a

For each vertex in order, calculate 
longest path as:
max! longest path to 𝑛 + 1, 
for all incoming neighbors 𝑛.



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
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- c a b d e a



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.
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{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.
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a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d <- b



Find the Longest Path in a DAG

Plan:
• Make second array that tracks where 

longest path came from.
• When neighbor with longest path is 

determined, save that neighbor.
• Backtrack through array to construct 

path.

b

c

d

e

g

a f

{a, c, g, b, d, e, f}

a b c d e f g
0 2 1 3 4 5 1

- c a b d e a
path: f <- e <- d <- b <- c <- a



Vertex Cover 

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.
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Vertex Cover 

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.
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Special Graphs

• Connected Graph = Graph that has a path between every vertex pair.
• Acyclic Graph = Graph with no cycles.
• Directed Acyclic Graph (DAG) = Directed graph with no cycles.
• Tree = Connected acyclic graph. Root

Leaf Child of d

Parent of e
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f Vertices (or Nodes)

Edges 𝑮 = (𝑽, 𝑬)
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Vertex Cover 

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. 
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Vertex Cover in Trees 
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Vertex Cover in Trees 
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? 
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

If a is not in a minimum VC
l



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = ??

If a is not in a minimum VC

𝑓(𝑎) = ??l



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = ??

l



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + ??

a

l
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓 𝑎 = 1 + ??

a
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

a

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)
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Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

a

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

“If there was a smaller VC 
rooted at b, it would give us 
a smaller VC rooted at a.”



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = ??l



Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + ??

b

l



l

Vertex Cover in Trees 
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

b

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)


