Greedy
CSCI 432
Greedy Algorithms:

- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic Programming:

- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.
Greedy Algorithms:

Dynamic Programming:
- Characterize structure of optimal solution.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Greedy:
- Make the choice that best helps some objective.
- Do not look ahead, plan, or revisit past decisions.
- Hope that optimal local choices lead to optimal global solutions.
Greedy Algorithms:

Dynamic Programming:
• Characterize structure of optimal solution.
• Recursively define value of optimal solution.
• Compute value of optimal solution.
• Construct optimal solution from computed information.

Greedy:
• Make the choice that best helps some objective.
• Do not look ahead, plan, or revisit past decisions.
• Hope that optimal local choices lead to optimal global solutions.

Greedy algorithm for:
• Robbing a jewelry store?
• Eating at a fancy buffet?
Proof of Optimality?

\[
E(i, j) = \min \left\{ \begin{array}{l}
E(i - 1, j) + 1 \\
E(i, j - 1) + 1 \\
E(i - 1, j - 1) + \text{diff}(i, j)
\end{array} \right.
\]

\[
\text{diff}(i, j) = \begin{cases}
0, & x[i] = y[j] \\
1, & x[i] \neq y[j]
\end{cases}
\]
Proof of Optimality?

\(O_n = \text{optimal profit from partitioning rod of length } n. \)
\(p_i = \text{profit for rod of length } i. \)

\[
O_n = \max_{1 \leq i \leq n} (p_i + O_{n-i})
\]

\(C(p) \) – minimum number of coins to make \(p \) cents.
\(x \) – value (e.g. $0.25) of a coin used in the optimal solution.

\[
C(p) = \begin{cases}
\min_{i: d_i \leq p} C(p - d_i) + 1, & p > 0 \\
0, & p = 0
\end{cases}
\]
Minimum Spanning Tree

Tree – connected graph with no loops.
Minimum Spanning Tree

Tree – connected graph with no loops.

Spanning tree – tree that includes all vertices in a graph.
Minimum Spanning Tree

Tree – connected graph with no loops.

Spanning tree – tree that includes all vertices in a graph.

Minimum spanning tree – spanning tree whose sum of edge costs is the minimum possible value.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

![Graph](image-url)
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: ?
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

What do we need to show?
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected unreached nodes without creating cycles.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected unreached nodes without creating cycles.
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of validity: Let $G = (V, E)$, and $T \subseteq E$ be the set of edges resulting from Kruskal’s algorithm.

T is a tree because it is connected (otherwise we could have added more edges without creating cycles) and there are no cycles.

T spans G because if it did not, we could have added more edges to connected unreached nodes without creating cycles.

$\therefore T$ is a spanning tree of G
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: ?
Kruskal’s MST Algorithm

Greedy decision: Add the edge with smallest weight, that does not create a cycle.

Proof of optimality: T is an MST, because???
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof:
Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

![Diagram of a graph with sets S and $V \setminus S$ and edges e' and e]
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e.

\[e' \]
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. Because?

2. That cycle must have another edge e' between S and $V \setminus S$. Because?
MST Cut Property

Lemma: Suppose that \(S \) is a subset of nodes from \(G = (V, E) \). Then, the cheapest edge \(e \) between \(S \) and \(V \setminus S \) is part of every MST.

Proof: Any MST of \(G \) must include some edge between \(S \) and \(V \setminus S \) (otherwise it would not be a tree).

Let \(e \) be the cheapest edge between \(S \) and \(V \setminus S \).

Suppose \(T \) is a ST that does not include \(e \). Then:

1. \(T \cup \{e\} \) must have a cycle. (Since spanning tree \(T \) already has a path between \(u \) and \(v \), so adding \(e \) will create a cycle)

2. That cycle must have another edge \(e' \) between \(S \) and \(V \setminus S \). Because?
Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, so adding e will create a cycle)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, so adding e will create a cycle)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. Then:
1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, so adding e will create a cycle)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)

Need to make sure we pick the edge between S and $V \setminus S$ on the cycle!
Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. Then:

1. $T \cup \{e\}$ must have a cycle. (Since spanning tree T already has a path between u and v, so adding e will create a cycle)

2. That cycle must have another edge e' between S and $V \setminus S$. (Since there must be a path from $u \in S$ to $v \in V \setminus S$ in T)

Need to make sure we pick the edge between S and $V \setminus S$ on the cycle!
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.
Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \backslash \{e'\}$.

Claim: T' is a cheaper ST.
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

T' is a tree (removing edge from cycle cannot disconnect graph)

T' spans V (same number of edges as ST T)
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

T' is a tree (removing edge from cycle cannot disconnect graph)

T' spans V (same number of edges as ST T)

$\text{weight}(T') = \text{weight}(T) + \text{weight}(e) - \text{weight}(e')$.

$$
\begin{align*}
\text{weight}(T') &= \text{weight}(T) + \text{weight}(e) - \text{weight}(e') \\
\end{align*}
$$
Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

T' is a tree (removing edge from cycle cannot disconnect graph) T' spans V (same number of edges as ST T)

weight(T') = weight(T) + weight(e) − weight(e').

\Rightarrow weight(T') < weight(T), since weight(e) < weight(e').
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

T' is a tree (removing edge from cycle cannot disconnect graph)

T' spans V (same number of edges as ST T)

$weight(T') = weight(T) + weight(e) - weight(e')$.

$\Rightarrow weight(T') < weight(T)$, since $weight(e) < weight(e')$.

$\Rightarrow T'$ is a cheaper ST.
MST Cut Property

Lemma: Suppose that S is a subset of nodes from $G = (V, E)$. Then, the cheapest edge e between S and $V \setminus S$ is part of every MST.

Proof: Any MST of G must include some edge between S and $V \setminus S$ (otherwise it would not be a tree).

Let e be the cheapest edge between S and $V \setminus S$.

Suppose T is a ST that does not include e. $T \cup \{e\}$ must have a cycle and that cycle must have another edge e' between S and $V \setminus S$.

Remove e' to form $T' = T \cup \{e\} \setminus \{e'\}$.

T' is a tree (removing edge from cycle cannot disconnect graph)

T' spans V (same number of edges as ST T)

weight(T') = weight(T) + weight(e) − weight(e').

\Rightarrow weight(T') < weight(T), since weight(e) < weight(e').

\Rightarrow T' is a cheaper ST.

So, e is part of every MST.