Dynamic Programming
CSCI 532

Vertex Cover

tree
Vertex Cover: Given graph, find the smallest subset of vertices such

that every edge in the graph has at least one vertex in the subset.
tree

O

O

Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If ais not in @ minimum VC

fl@)=2+7f(d)+f(e)+f(f)

Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

f If ais notin @ minimum VC
fl@=2+f(d)+f(e)+f(f)

So, which is it?

Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

f If ais notin @ minimum VC
fl@=2+f(d)+f(e)+f(f)

So, which is it?
The smallest!

Vertex Cover In Trees

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let f(v) = Size of minimum vertex cover rooted at v.

If a is in @ minimum VC
@ fla)=1+f(b) + f(c)
If ais not in @ minimum VC

fl@)=2+7f(d)+f(e)+f(f)

R \
£(v) = min {1 + z), BRI z Fom
uechildw) wegrandchild @))

Vertex Cover In Trees

Are we ready to calculate f (v) here?

fv) = min{l + z Fu), |child(w)| + z Fw)

uechildw) wegrandchild @)

N

J

Vertex Cover In Trees

Are we ready to calculate f (v) here?

fv) = min{l + z Fu), |child(w)| + z Fw)

uechildw) wegrandchild @)

N

J

Vertex Cover In Trees

Where do we have all the information
we need to calculate f(v)?

f(v) = min{l + z F(u), |child(w)] + 2 Fw)l

uechildw) wegrandchild @)

N

J

Vertex Cover In Trees

Where do we have all the information
we need to calculate f(v)?

At the leaves!!

n .
......

uechildw) wegrandchild @)

— min {1 + 2 F(u), |child(w)] + z Fw)l

"

J

Vertex Cover In Trees

= min{l +

Let f(v) = Size of minimum
vertex cover rooted at v.

Where do we have all the information

D @, lehid@)l+ > fw)

uechildw)

we need to calculate f(v)?

At the leaves!!

If visaleaf, f(v) =77

wegrandchild @)

"

J

Vertex Cover In Trees

0,

f(v) = min {1 +

Let f(v) = Size of minimum
vertex cover rooted at v.

Where do we have all the information
we need to calculate f(v)?

D @, lehid@)l+ > fw)

uechildw)

At the leaves!!

If visaleaf, f(v) =77

wegrandchild @)

N

J

Vertex Cover In Trees

0,

f(v) = min {1 +

Let f(v) = Size of minimum
vertex cover rooted at v.

Where do we have all the information
we need to calculate f(v)?

D @, lehid@)l+ > fw)

uechildw)

At the leaves!!
If visaleaf, f(v) =0

wegrandchild @)

N

J

Vertex Cover In Trees

When are we ready to calculate f(c¢)?

fv) = min¥1 + z F(u), |child(w)] + z Fw)l

uechildw) wegrandchild @)

N

J

Vertex Cover In Trees

When are we ready to calculate f(c¢)?
When we have f(e) and f(f)...

M Y
L4 n . Z
) . = 0

fv) = min{l + 2 Fu), |child(v)| + z Fw)

uechildw) wegrandchild @)

N

J

Vertex Cover In Trees

When are we ready to calculate f(c¢)?

When we have f(e) and f(f) and
f (v) for all of ¢’s grandchildren.

.....
......

fv) = min{l + 2 F@u), |child(w)] + Z Fw)l

uechildw) wegrandchildw)

N

J

Vertex Cover In Trees

When are we ready to calculate f(c¢)?

When we have f(e) and f(f) and
f (v) for all of ¢’s grandchildren.

How can we do this?

.....
......

N

fv) = min{l + z F(u), |child(w)] + z Fw)l
uechildw) wegrandchild @))

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,...

Order visited: a, b, c,d, e, f, g, h,i,j, k, |,m

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

preorder(Vertex v):
if v not null:
print(v.value())
for u in child(v):
preorder(u)

postorder(vertex v):
if v not null:
for u in child(v):
postorder(u)
print(v.value())

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

preorder(Vertex v):

1. Process
parent

2. Process
children

if v not null:
print(v.value())
for u in child(v):
preorder(u)

postorder(vertex v):

1. Process
children

2. Process
parent

if v not null:

for u in child(v):
postorder(u)

print(v.value())

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

preorder(Vertex v):
if v not null:
print(v.value())
for u in child(v):
preorder(u)

postorder(vertex v):
if v not null:
for u in child(v):
postorder(u)
print(v.value())

Preorder visited: a, b,d, g, h,|, m,c, e, f,i,j, k

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

preorder(Vertex v):
if v not null:
print(v.value())
for u in child(v):
preorder(u)

postorder(vertex v):
if v not null:

for u in child(v):

postorder(u)

Postorder visited: g, I, m, h, d, b, e, i,], k, f, ¢, a print(v.value())

Preorder visited: a, b,d, g, h,|, m,c, e, f,i,j, k

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

preorder(Vertex v):

if v not null:
print(v.value())
Which one for u in child(v):

do we want? preorder(u)

postorder(vertex v):
if v not null:

for u in child(v):

postorder(u)

Postorder visited: g, I, m, h, d, b, e, i,], k, f, ¢, a print(v.value())

Preorder visited: a, b,d, g, h,|, m,c, e, f,i,j, k

Tree Traversals

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat...

Which one
do we want?

postorder(vertex v):
if v not null:

for u in child(v):

postorder(u)

Postorder visited: g, I, m, h, d, b, e, i,], k, f, ¢, a print(v.value())

min_vc(VvVertex v):

Vertex Cover In Trees

f(v) = min {1 + Z f(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

min_vc(VvVertex v):

Vertex Cover In Trees

Let vc[Vv] be
array of min VC
sizes rooted at V.

f(v) = min {1 + Z f(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:

Let vC[V] be else:
array of min VC
sizes rooted at V.

f(v) = min {1 + Z f(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC
sizes rooted at V.

f(v) = min {1 + Z f(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

min_vc(Vertex v):

Vertex Cover In Trees

(d)
&

Let vc[Vv] be
e array of min VC

sizes rooted at V.
(b O

postorder(vVertex v):
if v not null:
for u in child(v):
postorder(u)
print(v.value())

D

flv) = min{l + Z f(u), [child(v)| +

uechild(v) wegrandchild)

if v is leaf:
vc[v] =0
else:
// calculate descendants

f(w)}

min_vc(Vertex v):

Vertex Cover In Trees

(d)
&

Let vc[Vv] be
e array of min VC

sizes rooted at V.
(b O

postorder(vVertex v):
if v not null:
for u in child(v):
postorder(u)
print(v.value())

D

flv) = min{l + Z f(u), [child(v)| +

uechild(v) wegrandchild)

if v is leaf:
vc[v] =0
else:
// calculate descendants

// min VC 1ncludes v

// min VC excludes v

f(w)}

vclv] = min(???7, ??77)

min_vc(Vertex v):

Vertex Cover In Trees if v is leaf:
[v] =0
vclv] =
Let vC[V] be else:
(@) array of min VC // calculate descendants
@ G sizes rooted at V. for u in child(v):
postorder(vVertex v): an_VC(?)
@ if v not null: // min VC 1ncludes v
for u in child(v):
(3 postorder(u)
print(v.value())

GS @ // min VC excludes v

f(v)=:rnh1{1-+ :E: f(u), |child(w)| + :E: ‘f(MO}
uechild(v) wegrandchild)

vclv] = min(???7, ??77)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC // calculate descendants
sizes rooted at V. for u in child(v):

min_vc(u)

// min VC 1ncludes v
inc = 1

// min VC excludes v

f(v) = min {1 + Z F(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

vclv] = min(???7, ??77)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC // calculate descendants
sizes rooted at V. for u in child(v):

min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
1nC += vc[u]

// min VC excludes v

f(v) = min {1 + Z F(u), |child(w)| + z f(w)}
uechild(v) wegrandchild)

vclv] = min(???7, ??77)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC // calculate descendants
sizes rooted at V. for u in child(v):

min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
1nC += vc[u]

// min VC excludes v
exc = |child(v) |

f(v) = min {1 + Z F(u), |child(w)| + z f(w)}
uechild) wegrandchild)

vclv] = min(???7, ??77)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC // calculate descendants
sizes rooted at V. for u in child(v):

min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
1nC += vc[u]

// min VC excludes v
exc = |child(v) |
for u in child(v):
for w in child(u):
exc += vc|[w]

vclv] = min(???7, ??77)

f(v) = min {1 + Z F(u), |child(w)| + z f(w)}
uechild) wegrandchild)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
Let vC[V] be else:

array of min VC // calculate descendants
sizes rooted at V. for u in child(v):

min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
1nC += vc[u]

// min VC excludes v

exc = |child(v) |

for u in child(v):
for w in child(u):

f(v)=min{1+ Z f(u), |child(w)| + z f(w)} exc 1z velu]

uechild(v) wegrandchild)
vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is leaf:
vc[v] =0
Let vC[V] be else:
array of min VC // calculate descendants
sizes rooted at V. for u in child(v):
min_vc(u)
find_min_vc(Tree T): // min VC includes v
ve = [0,...,0] mmc =1
min_vc(T.root) for_u in child(v):
return vc[T.root] inc += vclu]
>i> // min VC excludes v
‘) exc = |child(v)|

for u in child(v):
for w in child(u):

fw) = min{l + Z f(), |child(v)| + z f(W)} exc += ve[w]

uechild(v) wegrandchild)
vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
for u in child(v):
min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
inc += vclu]

// min VC excludes v
exc = |child(v) |
for u in child(v):

Running Time: 22 for w in child(u):
exc += vclw]

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants

- for u in child(v):
" min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
inc += vclu]

// min VC excludes v
exc = |child(v) |
for u in child(v):

Running Time: ?? for w in child(u):
exc += vclw]

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
Visit each {for' u in child(v):

hode once min_vc(u)

// min VC 1ncludes v

inc = 1

for u in child(v):
inc += vclu]

// min VC excludes v
exc = |child(v) |
for u in child(v):
for w in child(u):
exc += vc|[w]

Running Time: ??

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
Visit each {for' u in child(v):

hode once min_vc(u)

// min VC 1ncludes v
inc = 1
for u in child(v):
?2? .
- 1nc += vclu]

// min VC excludes v
exc = |child(v) |
for u in child(v):

Running Time: ?? for w in child(u):
exc += vclw]

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
Visiteach | for u in child(v):
node once{ min_vc(u)
// min VC 1ncludes v
inc = 1
Visit each for u 1in Ch'l-|d(V) :
node once{ inc += vclu]

// min VC excludes v
exc = |child(v) |

“for u in child(v):
Running Time: ?7? ?7? < for w in child(u):
L exc += vclw]

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
Visiteach | for u in child(v):
node once{ min_vc(u)
// min VC 1ncludes v
inc = 1
Visit each for u 1in Ch'l-|d(V) :
node once{ inc += vclu]

// min VC excludes v
exc = |child(v) |

L “for u in child(v):
Running Time: ?7? Visiteach J 7 eor W n child(u):
unning lime: ?: '
5 node once . exc += ve[w]

vc[v] = min(inc, exc)

min_vc(Vertex v):

Vertex Cover In Trees if v is Tleaf:
vc[v] =0
else:

// calculate descendants
Visiteach | for u in child(v):
node once{ min_vc(u)
// min VC 1ncludes v
inc = 1
Visit each for u 1in Ch'l-|d(V) :
node once{ inc += vclu]

// min VC excludes v
exc = |child(v) |

. “for u in child(v):

Running Time: 0(n) visiteach J " gor w in child(u):

unning Time: O(n |
node once . exc += vc[w]

vc[v] = min(inc, exc)

. min_vc(Vertex v):
Vertex Cover In Trees if v is Teaf:
vc[v] =0
else:
(a) // calculate descendants
How do we find the actual minimum for u in child(v):

vertex covery? min_vc(u)

// min VC 1ncludes v
inc = 1

for u in child(v):
Qg 1nc += vclu]

// min VC excludes v
exc = |child(v) |
for u in child(v):

Running Time: O(n) fOPe\)/(Vciz_CCj:}‘cliV](u}:

vc[v] = min(inc, exc)

min_vc(VvVertex v):

Vertex Cover In Trees if v is leaf:
vc[v] =0
else:
(a) // calculate descendants
How do we find the actual minimum for u in child(v):
vertex cover? min_vc(u)
// min VC 1ncludes v

1. Backtrack. At root, determine if we did :
. . : 1hc = 1
1ncC or eXc then check children (1nc) for u in child(v):

(gj or grandchildren (exc). inc += vc[u]
2. Sc:ave Results.. When the minimum of // min vC excludes v
(1nC, exc)is selected, save whether v exc = |child(Vv) |

or children of v are part of the cover. for u in child(v):

for w in child(u):
exc += vclw]

Running Time: 0(n)

vc[v] = min(inc, exc)

Motivation

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source s to sink t?

Motivation

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source s to sink t?

Total flow =7

