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Vertex Cover 

Vertex Cover: Given graph, find the smallest subset of vertices such 
that every edge in the graph has at least one vertex in the subset.
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Vertex Cover in Trees 
Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)
So, which is it?
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)
So, which is it?

The smallest!
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Imagine the minimum vertex cover. What can we say 
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Are we ready to calculate 𝑓(𝑣) here?
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Are we ready to calculate 𝑓(𝑣) here?
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information 
we need to calculate 𝑓(𝑣)?
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information 
we need to calculate 𝑓(𝑣)?

At the leaves!!
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information 
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = ??
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Let 𝑓 𝑣 = Size of minimum 
vertex cover rooted at v.



Vertex Cover in Trees 

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information 
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = ??

Let 𝑓 𝑣 = Size of minimum 
vertex cover rooted at v.
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Vertex Cover in Trees 

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information 
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = 0

Let 𝑓 𝑣 = Size of minimum 
vertex cover rooted at v.
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓)…
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𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓) and 
𝑓(𝑣) for all of 𝑐’s grandchildren.

l

a

fe



Vertex Cover in Trees 

b

d

c

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓) and 
𝑓(𝑣) for all of 𝑐’s grandchildren.

How can we do this?
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Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m



Tree Traversals 

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m



Tree Traversals 

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m



Tree Traversals 

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m



Tree Traversals 

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m



Tree Traversals 

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its 
children, then all of its grandchildren, then 
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

1. Process 
parent

2. Process 
children

1. Process 
children

2. Process 
parent

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

Which one 
do we want?
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Depth First: Start at a node. Follow 
children until leaf is reached. Back track 
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

Which one 
do we want?
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min_vc(Vertex v):

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)
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min_vc(Vertex v):

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

else:

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants

// min VC includes v

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be 
array of min VC 
sizes rooted at v.

find_min_vc(Tree T):
vc = [0,...,0]
min_vc(T.root)
return vc[T.root]
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

??

Running Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each 
node once

Running Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each 
node once

??

Running Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each 
node once

Visit each 
node once

??Running Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each 
node once

Visit each 
node once

Visit each 
node onceRunning Time:  ??
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min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time:  𝑂(𝑛)

How do we find the actual minimum 
vertex cover?

1. Backtrack. At root, determine if we did 
inc or exc then check children (inc) 
or grandchildren (exc).

2. Save Results. When the minimum of 
(inc, exc) is selected, save whether v
or children of v are part of the cover.



Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5
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network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?
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Suppose we have a directed graph that represent an oil pipeline 
network. Edge weight represent pipe capacity. How much oil can we 
transfer from source 𝑠 to sink 𝑡?
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Total flow = 7


