
Dynamic Programming
CSCI 532

Vertex Cover

Vertex Cover: Given graph, find the smallest subset of vertices such
that every edge in the graph has at least one vertex in the subset.

ü û

tree

tree

Vertex Cover in Trees
Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)

b
a

d

c

e f

g h j ki

ml

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)
So, which is it?

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)
So, which is it?

The smallest!

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

Imagine the minimum vertex cover. What can we say
about a? a is in a minimum vertex cover, or it’s not.

Let 𝑓 𝑣 = Size of minimum vertex cover rooted at v.

If a is in a minimum VC

𝑓(𝑎) = 1 + 𝑓(𝑏) + 𝑓(𝑐)

If a is not in a minimum VC

𝑓(𝑎) = 2 + 𝑓(𝑑) + 𝑓(𝑒) + 𝑓(𝑓)

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

l

Vertex Cover in Trees

b
a

d

c

e f

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Are we ready to calculate 𝑓(𝑣) here?

l

Vertex Cover in Trees

b

d

c

e

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Are we ready to calculate 𝑓(𝑣) here?

l

f

a

Vertex Cover in Trees

b

d

c

e

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information
we need to calculate 𝑓(𝑣)?

l

a

f

Vertex Cover in Trees

b

d

c

e

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information
we need to calculate 𝑓(𝑣)?

At the leaves!!

l

a

f

Vertex Cover in Trees

b

d

c

e

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = ??

l

a

f

Let 𝑓 𝑣 = Size of minimum
vertex cover rooted at v.

Vertex Cover in Trees

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = ??

Let 𝑓 𝑣 = Size of minimum
vertex cover rooted at v.

b

d

c

e

g h j ki

ml

a

f

Vertex Cover in Trees

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

Where do we have all the information
we need to calculate 𝑓(𝑣)?

At the leaves!!
If 𝑣 is a leaf, 𝑓(𝑣) = 0

Let 𝑓 𝑣 = Size of minimum
vertex cover rooted at v.

b

d

c

e

g h j ki

ml

a

f

Vertex Cover in Trees

b

d

c

e

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?

l

a

f

Vertex Cover in Trees

b

d

c

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓)…

l

a

fe

Vertex Cover in Trees

b

d

c

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓) and
𝑓(𝑣) for all of 𝑐’s grandchildren.

l

a

fe

Vertex Cover in Trees

b

d

c

g h j ki

m

𝑓 𝑣 = min 1 + 1
!∈child($)

𝑓(𝑢) , child(𝑣) + 1
&∈grandchild($)

𝑓(𝑤)

When are we ready to calculate 𝑓(𝑐)?
When we have 𝑓(𝑒) and 𝑓(𝑓) and
𝑓(𝑣) for all of 𝑐’s grandchildren.

How can we do this?

l

a

fe

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Breadth First: Start at a node. Visit all of its
children, then all of its grandchildren, then
great-grandchildren,…

Order visited: a, b, c, d, e, f, g, h, i, j, k, l ,m

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

1. Process
parent

2. Process
children

1. Process
children

2. Process
parent

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

Which one
do we want?

Tree Traversals

b

d

g h j ki

ml

a

e f

c

Depth First: Start at a node. Follow
children until leaf is reached. Back track
until unvisited child is available. Repeat…

preorder(Vertex v):
if v not null:

print(v.value())
for u in child(v):

preorder(u)

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Preorder visited: a, b, d, g, h, l, m, c, e, f, i, j, k

Postorder visited: g, l, m, h, d, b, e, i, j, k, f, c, a

Which one
do we want?

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

else:

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants

// min VC includes v

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

postorder(Vertex v):
if v not null:

for u in child(v):
postorder(u)

print(v.value())

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(???, ???)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

𝑓 𝑣 = min 1 + /
!∈child($)

𝑓(𝑢) , child(𝑣) + /
&∈grandchild($)

𝑓(𝑤)

Let vc[v] be
array of min VC
sizes rooted at v.

find_min_vc(Tree T):
vc = [0,...,0]
min_vc(T.root)
return vc[T.root]

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

??

Running Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each
node once

Running Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each
node once

??

Running Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each
node once

Visit each
node once

??Running Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Visit each
node once

Visit each
node once

Visit each
node onceRunning Time: ??

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time: 𝑂(𝑛)

Visit each
node once

Visit each
node once

Visit each
node once

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time: 𝑂(𝑛)

How do we find the actual minimum
vertex cover?

Vertex Cover in Trees

b

d

g h j ki

ml

a

e f

c

min_vc(Vertex v):
if v is leaf:

vc[v] = 0
else:

// calculate descendants
for u in child(v):

min_vc(u)

// min VC includes v
inc = 1
for u in child(v):

inc += vc[u]

// min VC excludes v
exc = |child(v)|
for u in child(v):

for w in child(u):
exc += vc[w]

vc[v] = min(inc, exc)

Running Time: 𝑂(𝑛)

How do we find the actual minimum
vertex cover?

1. Backtrack. At root, determine if we did
inc or exc then check children (inc)
or grandchildren (exc).

2. Save Results. When the minimum of
(inc, exc) is selected, save whether v
or children of v are part of the cover.

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

Motivation

s

a

t

c e

d

b

3

4

3
10

1
1

2

5

1
2

5

Suppose we have a directed graph that represent an oil pipeline
network. Edge weight represent pipe capacity. How much oil can we
transfer from source 𝑠 to sink 𝑡?

s

a

t

c e

d

b

2

4

1
1

1

2

5

2

5

Total flow = 7

