Flow Networks

CSCI 532
Motivation

Suppose we have a directed graph that represent an oil pipeline network. Edge weight represent pipe capacity. How much oil can we transfer from source s to sink t?
Motivation

Suppose we have a directed graph that represent an oil pipeline network. Edge weight represent pipe capacity. How much oil can we transfer from source s to sink t?
Motivation

Suppose we have a directed graph that represents an oil pipeline network. Edge weight represents pipe capacity. How much oil can we transfer from source s to sink t?

Flow networks are commonly used to model transportation networks:
- Edges carry traffic (capacity constrained).
- Nodes act as junctions between edges.

Examples:
- Internet routing.
- Road networks.
- Electricity distribution.
Flow Network

Flow Network:

An $s - t$ flow is a function $f: E \rightarrow \mathbb{R}^+$ such that:
Flow Network

Flow Network:
• Directed-edge graph, $G = (V, E)$.
• Non-negative edge capacity, c_e.
• Single source, s, without input edges.
• Single sink, t, without output edges.

An $s \rightarrow t$ flow is a function $f: E \rightarrow \mathbb{R}^+$ such that:
Flow Network

Flow Network:
- Directed-edge graph, $G = (V, E)$.
- Non-negative edge capacity, c_e.
- Single source, s, without input edges.
- Single sink, t, without output edges.

An $s - t$ flow is a function $f: E \to \mathbb{R}^+$ such that:
- $0 \leq f(e) \leq c_e, \forall e \in E$. (capacity constraint)
Flow Network

Flow Network:

- Directed-edge graph, $G = (V, E)$.
- Non-negative edge capacity, c_e.
- Single source, s, without input edges.
- Single sink, t, without output edges.

An $s - t$ flow is a function $f : E \to \mathbb{R}^+$ such that:

- $0 \leq f(e) \leq c_e, \forall e \in E$. (capacity constraint)
- $\sum_{e \in \text{input}(v)} f(e) = \sum_{e \in \text{output}(v)} f(e), \forall v \in V \setminus \{s, t\}$. (conservation of flow constraint: “Everything that goes into a node has to come out, except for s and t”)

Flow Network

Flow Network:
- Directed-edge graph, $G = (V, E)$.
- Non-negative edge capacity, c_e.
- Single source, s, without input edges.
- Single sink, t, without output edges.

An $s - t$ flow is a function $f: E \to \mathbb{R}^+$ such that:
- $0 \leq f(e) \leq c_e$, $\forall e \in E$. (capacity constraint)
- $\sum_{e \in \text{input}(v)} f(e) = \sum_{e \in \text{output}(v)} f(e)$, $\forall v \in V \setminus \{s, t\}$.
 (conservation of flow constraint: “Everything that goes into a node has to come out, except for s and t”)
- Value of flow $= \text{val}(f) = \sum_{e \in \text{output}(s)} f(e) = \sum_{e \in \text{input}(t)} f(e)$
Flow Network

Flow Network:
• Directed-edge graph, $G = (V, E)$.
• Non-negative edge capacity, c_e.
• Single source, s, without input edges.
• Single sink, t, without output edges.

An $s - t$ flow is a function $f : E \rightarrow \mathbb{R}^+$ such that:
• $0 \leq f(e) \leq c_e, \forall e \in E$. (capacity constraint)
• $\sum_{e \in \text{input}(v)} f(e) = \sum_{e \in \text{output}(v)} f(e), \forall v \in V \setminus \{s, t\}$.
 (conservation of flow constraint: “Everything that goes into a node has to come out, except for s and t”)
• Value of flow = $val(f) = \sum_{e \in \text{output}(s)} f(e) = \sum_{e \in \text{input}(t)} f(e)$

Maximum Flow Problem:
Given a flow network, find the maximum possible value of flow.
Maximum Flow Algorithm

Can we use Dynamic Programming?

Can we use a Greedy approach?
Maximum Flow Algorithm

Can we use Dynamic Programming?
What is the optimal substructure?
Can we use a Greedy approach?
What would the greedy choice be?
Maximum Flow Algorithm

Can we use Dynamic Programming?
 What is the optimal substructure?
Can we use a Greedy approach?
 What would the greedy choice be?

Greedy Choice: Select path that can handle most flow, update capacities, repeat.
Maximum Flow Algorithm

Can we use Dynamic Programming?
What is the optimal substructure?
Can we use a Greedy approach?
What would the greedy choice be?

Greedy Choice: Select path that can handle most flow, update capacities, repeat.

Flow of 20, but max flow is 30. Need way to “undo” parts of previous decisions.
Residual Graph

Residual Graph: Tool to re-route flow we already decided to push.
Residual Graph

Given a flow network G, and a flow f, define the residual graph G_f as:

- Identical nodes as G.

![Graph Diagram](image-url)
Residual Graph

Given a flow network G, and a flow f, define the residual graph G_f as:

- Identical nodes as G.
- For each edge e, if $f(e) < c_e$, let $c_e = c_e - f(e)$.
Residual Graph

Given a flow network G, and a flow f, define the residual graph G_f as:

- Identical nodes as G.
- For each edge e, if $f(e) < c_e$, let $c_e = c_e - f(e)$.
- For each edge $e = (u, v)$, if $f(e) > 0$, create new edge $e' = (v, u)$ with $c_{e'} = f(e)$ (e' called back edge).
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

$P = ?$
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

\[
P = s \rightarrow b \rightarrow a \rightarrow t
\]
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

$bottleneck(P, f) = \text{minimum residual capacity on any edge in } P = 10$.

$P = s \rightarrow b \rightarrow a \rightarrow t$
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

\[
\text{bottleneck}(P, f) = \text{minimum residual capacity on any edge in } P = 10.
\]

\[
\text{augment}(f, P)
\]

\[
b = \text{bottleneck}(P, f) = 10
\]

\[
\text{for each edge } (u, v) \text{ in } P
\]

\[
\text{if } (u, v) \text{ is a back edge } f((v, u)) = b
\]

\[
\text{else } f((u, v)) += b
\]

\[
\text{return } f
\]
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

\[
\text{bottleneck}(P, f) = \text{minimum residual capacity on any edge in } P = 10.
\]

\[
\text{augment}(f, P)
\]

\[
b = \text{bottleneck}(P, f) = 10
\]

\[
\text{for each edge } (u, v) \text{ in } P
\]

\[
\text{if } (u, v) \text{ is a back edge}
\]

\[
f((v, u)) -= b
\]

\[
\text{else}
\]

\[
f((u, v)) += b
\]

\[
\text{return } f
\]

\[
P = s \rightarrow b \rightarrow a \rightarrow t
\]
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

$bottleneck(P, f) = \text{minimum residual capacity on any edge in } P = 10.$

$augment(f, P)$

$b = bottleneck(P, f) = 10$
for each edge (u, v) in P
if (u, v) is a back edge
$f((v, u)) = b$
else
$f((u, v)) += b$
return f
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

$bottleneck(P, f) = minimum residual capacity on any edge in P = 10.$

augment(f, P)
 $b = bottleneck(P, f) = 10$
 for each edge (u, v) in P
 if (u, v) is a back edge
 $f((v, u)) = b$
 else
 $f((u, v)) += b$
 return f

$P = s \rightarrow b \rightarrow a \rightarrow t$
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

$bottleneck(P, f) = \text{minimum residual capacity on any edge in } P = 10.$

$augment(f, P)
\quad b = bottleneck(P, f) = 10
\quad \text{for each edge } (u, v) \text{ in } P
\quad \quad \text{if } (u, v) \text{ is a back edge}
\quad \quad \quad f((v, u)) = b
\quad \text{else}
\quad \quad f((u, v)) = b
\quad \text{return } f$

$P = s \rightarrow b \rightarrow a \rightarrow t$
Flows in Residual Graphs

Let P be a simple $s - t$ path in G_f.

\[\text{bottleneck}(P, f) = \text{minimum residual capacity on any edge in } P = 10. \]

\[\text{augment}(f, P) \]
\[b = \text{bottleneck}(P, f) = 10 \]
\[\text{for each edge } (u, v) \text{ in } P \]
\[\text{if } (u, v) \text{ is a back edge } \]
\[f((v, u)) = b \]
\[\text{else } \]
\[f((u, v)) += b \]
\[\text{return } f \]
Let P be a simple $s - t$ path in G_f.

$bottleneck(P, f) = \text{minimum residual capacity on any edge in } P = 10$.

$augment(f, P)$

\[
b = bottleneck(P, f) = 10
\]

\[
\text{for each edge } (u, v) \text{ in } P
\]

\[
\text{if } (u, v) \text{ is a back edge}
\]

\[
f((v, u)) = b
\]

\[
\text{else}
\]

\[
f((u, v)) += b
\]

\[
\text{return } f
\]
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
 while simple s-t path in residual graph \(G_f \) exists
 \(P = \) simple s-t path in \(G_f \)
 \(f' = \) augment\((f, P) \)
 \(f = f' \)
 \(G_f = G_f \)'
 return \(f \)

I.e. Push flow along \(P \).
Recalculate residual graph based on new flow \(f' \).
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
 while \(s-t \) path in \(G_f \) exists
 \(P = \) simple \(s-t \) path in \(G_f \)
 \(f' = \) augment\((f, P) \)
 \(f = f' \)
 \(G_f = G_f' \)
 return \(f \)

augment\((f, P) \)
 \(b = \) bottleneck\((P,f) \)
 for each edge \((u,v) \) in \(P \)
 if \((u,v) \) is a back edge
 \(f((v,u)) -= b \)
 else
 \(f((u,v)) += b \)
 return \(f \)

Residual graph for flow \(f, G_f \):
 \(* \) \(\forall e, \) if \(f(e) < c_e \), let \(c'_e = c_e - f(e) \).
 \(* \) \(\forall e = (u,v), \) if \(f(e) > 0 \), create \(e' = (v,u) \) with \(c'_e = f(e) \).
Ford-Fulkerson Algorithm

Max-Flow(G)
\[
f(e) = 0 \text{ for all } e \in G
\]
while s-t path in \(G_f \) exists
\[
P = \text{simple s-t path in } G_f
\]
f' = augment(f, P)
f = f'
\[
G_f = G_f'
\]
return f

augment(f, P)
\[
b = \text{bottleneck}(P, f)
\]
for each edge \((u, v)\) in P
\[
\text{if } (u, v) \text{ is a back edge}
\]
f\((v, u)\) -= b
\[
\text{else}
\]
f\((u, v)\) += b
return f

Residual graph for flow \(f, G_f \):
- \(\forall e \), if \(f(e) < c_e \), let \(c_e = c_e - f(e) \).
- \(\forall e = (u, v) \), if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c_{e'} = f(e) \).
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

\[P = \text{simple s-t path in } G_f \]

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\(G_f = G_{f'} \)

return \(f \)

augment(f, P)

\[b = \text{bottleneck}(P, f) \]

for each edge \((u, v)\) in \(P\)

if \((u, v)\) is a back edge

\[f((v, u)) -= b \]

else

\[f((u, v)) += b \]

return \(f \)

Residual graph for flow \(f, G_f \):

\(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e). \)

\(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
while s-t path in \(G_f \) exists
 \(P = \) simple s-t path in \(G_f \)
 \(f' = \) augment\((f, P) \)
 \(f = f' \)
\(G_f = G_f' \),
return \(f \)

augment\((f, P) \)
 \(b = \) bottleneck\((P, f) \)
for each edge \((u, v) \) in \(P \)
 if \((u, v) \) is a back edge
 \(f((v, u)) = b \)
 else
 \(f((u, v)) = b \)
return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \) if \(f(e) < c_e \), let \(c_e = c_e - f(e) \).
- \(\forall e = (u, v), \) if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

P = simple s-t path in \(G_f \)

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\[G_f = G_f' \]

return \(f \)

augment \(f, P \)

\[b = \text{bottleneck}(P, f) \]

for each edge \((u, v)\) in \(P \)

if \((u, v)\) is a back edge

\[f((v, u)) = -b \]

else

\[f((u, v)) = +b \]

return \(f \)

Residual graph for flow \(f, G_f \):

- \(\forall e, if f(e) < c_e, let c_e = c_e - f(e) \).
- \(\forall e = (u, v), if f(e) > 0, create e' = (v, u) with c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)
\[f(e) = 0 \text{ for all } e \text{ in } G \]
while s-t path in \(G_f \) exists
\[P = \text{simple s-t path in } G_f \]
\[f' = \text{augment}(f, P) \]
\[f = f' \]
\[G_f = G_{f'} \]
return \(f \)

augment(f, P)
\[b = \text{bottleneck}(P,f) \]
for each edge \((u, v)\) in \(P \)
if \((u, v)\) is a back edge
\[f((v, u)) -= b \]
else
\[f((u, v)) += b \]
return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)
\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in G exists
\[P = \text{simple s-t path in } G_f \]
\[f' = \text{augment}(f, P) \]
\[f = f' \]
\[G_f = G_{f'} \]
return \(f \)

augment(f, P)
\[b = \text{bottleneck}(P, f) \]
for each edge \((u, v)\) in \(P \)
\[\text{if } (u, v) \text{ is a back edge} \]
\[f((v, u)) =- b \]
\[\text{else} \]
\[f((u, v)) =+ b \]
return \(f \)
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
 while s-t path in \(G_f \) exists
 P = simple s-t path in \(G_f \)
 \(f' = \text{augment}(f, P) \)
 \(f = f' \)
 \(G_f = G_f' \)
 return \(f \)

augment(f, P)
 \(b = \text{bottleneck}(P, f) \)
 for each edge \((u, v) \) in \(P \)
 if \((u, v) \) is a back edge
 \(f((v, u)) -= b \)
 else
 \(f((u, v)) += b \)
 return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

\[P = \text{simple s-t path in } G_f \]

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\[G_f = G_{f'}, \]

return \(f \)

augment(f, P)

\[b = \text{bottleneck}(P,f) \]

for each edge \((u, v)\) in \(P\)

if \((u, v)\) is a back edge

\[f((v, u)) -= b \]

else

\[f((u, v)) += b \]

return \(f \)

Residual graph for flow \(f \), \(G_f \):

- \(\forall e \), if \(f(e) < c_e \), let \(c_e = c_e - f(e) \).
- \(\forall e = (u, v) \), if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c_{e'} = f(e) \)

Residual graph for flow \(f \), \(G_f \):

\[g = \text{residual graph} \]

\[P = s \rightarrow c \rightarrow b \rightarrow t \]

\[G_f : \]

\[G : \]

\[f : \]
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

1. \(P = \text{simple s-t path in } G_f \)
2. \(f' = \text{augment}(f, P) \)
3. \(f = f' \)

\(G_f = G_f' \)

return \(f \)

augment(f, P)

\[b = \text{bottleneck}(P,f) \]

for each edge \((u, v)\) in \(P\)

1. if \((u, v)\) is a back edge
 \[f((v, u)) -= b \]
2. else
 \[f((u, v)) += b \]

return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_e' = f(e) \).

\[P = s \rightarrow a \rightarrow t \]
Ford-Fulkerson Algorithm

Max-Flow(G)
\[f(e) = 0 \text{ for all } e \text{ in } G \]
while s-t path in \(G_f \) exists
\[P = \text{simple s-t path in } G_f \]
\[f' = \text{augment}(f, P) \]
\[f = f' \]
\[G_f = G_{f'} \]
return \(f \)

augment(f, P)
\[b = \text{bottleneck}(P, f) \]
for each edge \((u, v)\) in \(P \)
\[\text{if } (u, v) \text{ is a back edge} \]
\[f((v, u)) -= b \]
else
\[f((u, v)) += b \]
return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)
- $f(e) = 0$ for all e in G
- while s-t path in G_f exists
 - $P =$ simple s-t path in G_f
 - $f' = \text{augment}(f, P)$
 - $f = f'$
- $G_f = G_{f'}$
- return f

augment(f, P)
- $b = \text{bottleneck}(P, f)$
- for each edge (u, v) in P
 - if (u, v) is a back edge
 - $f((v, u)) -= b$
 - else
 - $f((u, v)) += b$
- return f

Residual graph for flow f, G_f:
- $\forall e$, if $f(e) < c_e$, let $c_e = c_e - f(e)$.
- $\forall e = (u, v)$, if $f(e) > 0$, create $e' = (v, u)$ with $c_{e'} = f(e)$
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
while s-t path in \(G_f \) exists
 P = simple s-t path in \(G_f \)
 \(f' = \text{augment}(f, P) \)
 \(f = f' \)
\(G_f = G_f' \)
return \(f \)

augment\((f, P) \)
 \(b = \text{bottleneck}(P,f) \)
 for each edge \((u, v) \) in \(P \)
 if \((u, v) \) is a back edge
 \(f((v, u)) = -b \)
 else
 \(f((u, v)) = +b \)
 return \(f \)

Residual graph for flow \(f, G_f \):
 - \(\forall e, \text{if} \ f(e) < c_e, \text{let} \ c_e = c_e - f(e) \).
 - \(\forall e = (u,v), \text{if} \ f(e) > 0, \text{create} \ e' = (v,u) \) with \(c_{e'} = f(e) \)

\(G: \)
\(f: \)
\(G_f: \)

\(P = s \to a \to t \)
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

\[P = \text{simple s-t path in } G_f \]

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\[G_f = G_f' \]

return \(f \)

augment(f, P)

\[b = \text{bottleneck}(P, f) \]

for each edge \((u, v)\) in \(P \)

if \((u, v)\) is a back edge

\[f((v, u)) = b \]

else

\[f((u, v)) = b \]

return \(f \)

Residual graph for flow \(f, G_f \):

- \(\forall e, \text{if } f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)

Residual graph for flow \(f, G_f \):

\[P = s \rightarrow a \rightarrow b \rightarrow c \rightarrow t \]
Ford-Fulkerson Algorithm

Max-Flow(G)
- \(f(e) = 0 \) for all \(e \) in \(G \)
- while \(s-t \) path in \(G_f \) exists
 - \(P = \) simple \(s-t \) path in \(G_f \)
 - \(f' = \) augment \((f, P)\)
 - \(f = f' \)
 - \(G_f = G'_f \)
- return \(f \)

augment \((f, P)\)
- \(b = \) bottleneck \((P, f)\)
- for each edge \((u, v)\) in \(P \)
 - if \((u, v)\) is a back edge
 - \(f((v, u)) -= b \)
 - else
 - \(f((u, v)) += b \)
- return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall E, \text{if } f(e) < c_e, \text{let } c'_e = c_e - f(e). \)
- \(\forall E = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c'_e = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

\[P = \text{simple s-t path in } G_f \]

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\[G_f = G_{f'} \]

return \(f \)

augment(f, P)

\[b = \text{bottleneck}(P, f) \]

for each edge \((u, v)\) in \(P \)

if \((u, v)\) is a back edge

\[f((v, u)) -= b \]

else

\[f((u, v)) += b \]

return \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e \), if \(f(e) < c_e \), let \(c_e = c_e - f(e) \).
- \(\forall e = (u, v) \), if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c_{e'} = f(e) \)
Ford-Fulkerson Algorithm

Max-Flow(G)

\[f(e) = 0 \text{ for all } e \text{ in } G \]

while s-t path in \(G_f \) exists

\[P = \text{simple s-t path in } G_f \]

\[f' = \text{augment}(f, P) \]

\[f = f' \]

\[G_f = G_{f'} \]

return \(f \)

Residual graph for flow \(f, G_f \):

- \(\forall e, f(e) < c_e, \text{let } c_e = c_e - f(e) \).
- \(\forall e = (u, v), \text{if } f(e) > 0, \text{create } e' = (v, u) \text{ with } c_{e'} = f(e) \)

augment(f, P)

\[b = \text{bottleneck}(P, f) \]

for each edge \((u, v)\) in \(P \)

- **if** \((u, v)\) is a back edge

 \[f((v, u)) -= b \]

- **else**

 \[f((u, v)) += b \]

return \(f \)
Ford-Fulkerson Algorithm

Max-Flow(G)
 \(f(e) = 0 \) for all \(e \) in \(G \)
 \textbf{while} s-t path in \(G_f \) exists
 \(P = \) simple s-t path in \(G_f \)
 \(f' = \text{augment}(f, P) \)
 \(f = f' \)
 \(G_f = G_f' \)
 \textbf{return} \(f \)

augment(f, P)
 \(b = \text{bottleneck}(P,f) \)
 \textbf{for} each edge \((u, v)\) in \(P \)
 if \((u, v)\) is a back edge
 \(f((v, u)) -= b \)
 else
 \(f((u, v)) += b \)
 \textbf{return} \(f \)

Residual graph for flow \(f, G_f \):
- \(\forall e, \) if \(f(e) < c_e \), let \(c'_e = c_e - f(e) \).
- \(\forall e = (u, v), \) if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c'_e = f(e) \).
Ford-Fulkerson Algorithm

Max-Flow(G)

1. \(f(e) = 0 \) for all \(e \) in \(G \)
2. while \(s \)-t path in \(G_f \) exists

 a. \(P = \) simple \(s \)-t path in \(G_f \)

 b. \(f' = \) augment\((f, P)\)

 c. \(f = f' \)

 d. \(G_f = G_f' \)

3. return \(f \)

augment\((f, P)\)

1. \(b = \) bottleneck\((P, f)\)
2. for each edge \((u, v)\) in \(P \)

 a. if \((u, v)\) is a back edge

 i. \(f((v, u)) = b \)

 b. else

 i. \(f((u, v)) = b \)

3. return \(f \)

Need to show:

1. Validity.
2. Running time.
3. Finds max flow.

Residual graph for flow \(f, G_f \):

- \(\forall e, \) if \(f(e) < c_e \), let \(c_e = c_e - f(e) \).
- \(\forall e = (u, v), \) if \(f(e) > 0 \), create \(e' = (v, u) \) with \(c_{e'} = f(e) \).